

DL TUTORIAL

Simply Easy Learning by tutorialspoint.com

ABOUT THE TUTORIAL

SQL Tutorial

SQL is a database computer language designed for the retrieval and management of data in relational
database. SQL stands for Structured Query Language.

This tutorial will give you quick start with SQL.

Audience

This reference has been prepared for the beginners to help them understand the basic to advanced
concepts related to SQL languages.

Prerequisites

Before you start doing practice with various types of examples given in this reference, I'm making an
assumption that you are already aware about what is database, especially RDBMS and what is a
computer programming language.

Copyright & Disclaimer Notice

a All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from
tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accu racy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at we bmaster@tutorialspoint.com

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

Table of Content

SQL TUtOr@l.. e 2
AUAIBNCE ... et 2
PrereqUISITES .. .ciie e 2
Copyright & Disclaimer NOtiCe...........oovvviiiiiiiiiiiiii e, 2
SOQL OVEIVIEW ... et 15
LAY o L LSS © | R 15
WY SO 2 e 15
[111 0] VST 16
SO PrOCESS: ..ottt 16
SOQL COMMANAS: ... ciiiiiie et e e e e e e e e e rb e e e eaaa s 17
DDL - Data Definition Language: ... 17
DML - Data Manipulation Language:............ccoovvviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeee 17
DCL - Data Control LanguUage:coeeuuuiiiiieeeeeeeeeeiiie e 17
DQL - Data Query LanQUAagE:ccoeerrrrmuiieieeeeeeeeeiiiee e 17
SQL RDBMS CONCEPLS....cvvuiiiiiiiiiii e ea e 18
LAY g = L LSRN =] o S 19
What IS reCord, OF FOW?coo e 19
WAL IS COIUMN? ... et e e 19
What IS NULL VAIUE?.......coeeeieiiiee et 19
SOQL CONSIIAINTS: .. .cceiviee e e e e e e e e e aaa s 20
NOT NULL CONSIrAINT: .eeeieiiiiiiee e eeeeeeeeiiiise e e e e e e e e e e e e e e eeannnnn e e eees 20
DEFAULT CONSIrAINT:.....ceieiiiiiiie e e e e e e e e e e e e e e e 21
EXAMPIE: .. e ——————————— 21
Drop Default CoNSIraint:..........oooiiiiiiiiiiiieeeeeeeee 21
UNIQUE CONSIIAINT: ..eeeiiiiiiee e eeeeeeeiiiiis e e e e e e e e e e e e eeeennnn e e e e e e eeeenees 21
EXAMPIE: .. e ——————————— 21
DROP a UNIQUE CONSIrAINt:......ccceieeeeiiiiiiieeeeeeeeeeiiiins e e e e e e e eeaennnnn e e e 22
o Y AN 2 2 1=)Y 22
Create Primary KEY:uu oot e e e e e aanans 22
Delete Primary KeY: ... 23
FOREIGN KEY: .. oo 24
E XML e 24
DROP a FOREIGN KEY CONSraiNt:uiiiiieeiieiieiiiiiee e eeeeeeeeiiinne e 25
(O o | =IO Q00 0151 1= 1| SRR 25
E XML e 25
DROP a CHECK CONSIAINT:oiiieeieeeeeiiiiiee e eeee e e e e e e e e 25
INDEX: ..o 26

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

= 1 1] 0] L= 26

DROP a INDEX CONSraiNt:.......uiieiiiiiii e e e e e 26
Data INtEOIILY: . ..o 26
Database NOrmalizationccovvvviiiiiiiii e 27
Third Rule of INFo 29
SQL RDBMS Databases.........ccuoveevuieiiiieeiiieeiiieeeieeee e 32
1Y 21 | PR 32
1151 (0] YU 32
AU S L e 33
IMS SQL SEIVET ...t e et e e et e e e eaaa e e eees 33
[1151 (0] YO 33
A U S L e 34
L@] A O I 34
[1151 (0] YO 34
AU S L e 35
IMS- AC CESS ... et e e 36
AU S, L. 36
SOL SYNMEAX ..ttt ettt ettt 37
SQL SELECT Statement:......c..ciiiiii e e 37
SQL DISTINCT ClaUSE: ...cevviieieeiie et 37
SQL WHERE ClaUSE:......ccccvtiiiieiiiieeeeeeee et 37
SQL AND/OR ClaUSE: ... ceeiiiieeeeeieeeeeee et 37
SQL IN ClAUSE: ... e e e e e e e e e e e e e e eeeennes 38
SQL BETWEEN ClaUSE:ccoiiiieeeie e 38
SQL LIKE ClAUSE: ..ottt 38
SQL ORDER BY ClaUSE:cceeieeeeeieieee et e e e e e e e eeeeenes 38
SQL GROUP BY ClaUSE:cceeieieeeiiie et e e e eanans 38
SOQL COUNT ClAUSE: ..uuneieiiieeeeeeie et eeaaa s 38
SQL HAVING ClaUSE:uuiiieeeiiiieeiiiie et e e e e e e e e e e e eeeenees 38
SQL CREATE TABLE Statement:.........cooviviiiiiiiieiiiie e 38
SQL DROP TABLE Statement:cc.ooiiiiiiiie e 39
SQL CREATE INDEX Statement:coiiiiiiiiieeiieeeeei e 39
SQL DROP INDEX Statement:coouiiiiii e 39
SQL DESC Statement:........ccouniiiiii e e eas 39
SQL TRUNCATE TABLE Statement:cccooveiiiiiiie e 39
SQL ALTER TABLE Statement:.........cccoiiiiiiiiiieeeeeiee e 39
SQL ALTER TABLE Statement (Rename):ccccceevieviiiiiieeeeiiiieeeeeiin 39
SQL INSERT INTO Statement:cooveiiiieieeiiieeeeeei e 39
SQL UPDATE Statement:oieiii e ea s 39

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL DELETE Statement:.........coeii e e e e e 40

SQL CREATE DATABASE Statement:ccuuvviiiiiiiiiiiiiiiiieieeee e 40
SQL DROP DATABASE Statement:coooeuiiiiiiiiiieeeeieeeee e 40
SQL USE Statement: ... e e ea s 40
SQL COMMIT Statement:cooouiieiiiiie e 40
SQL ROLLBACK StatemeNnt:.........uieiiiiieeeeiiie e 40
SOQL DAta TYPES ettt 41
EXact NUMETIC Data TYPES: ... i i e e i e et 41
Approximate NUumeric Data TYPES: ...coooeeeeeeeeeeeeeeeeeeeeeeee e 41
Date and Time Data TYPES:cooiiiiiiiiiiiiiiieeeeeeeeeeee e 42
Character Strings Data TYPES:cuuuuiiiieieeeeeeeiiie e e e e e e e eeaens 42
Unicode Character Strings Data TYPES:covvviviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 42
Binary Data TYPES: ... oo 42
YT B = - N 1Y = P 43
SQL OPEIAtOrS....uiiiiiiie it 44
What is an Operator in SQL7?cooooviiiiiiiii e 44
SQL ArthmetiC OPEIatOrS:uuuuuriiiiiiiiiiiiiiiiiiiiiiiiiieeieebeb bbb 44
SQL ComparisOn OPEratOrS:uuuuiiiieeeeeeeeeiiiiiie e e e eeeeeeeaarins e e eeeeeeennns 45
Y@] I oL [[or= 1 I @] o1=T =1 (0] =SSR 47
SQL EXPreSSIONS ...ccvvuiiiii et ee et e e e e e e e 50
B0}] £ D AP SPRRRPPPRRPPP 50
SQL - Boolean EXPreSSIONS:ccvvuuiiiiieeeeeeeeeiiiee e e e e e e e eeeanns 50
SQL - NUMENC EXPreSSION:cccieiiiiiiiii e e e eeeeeeeiie e e e e e e e e e e e e eeeennns 51
SQL - Date EXPreSSIONS: .. .uuuuiiiiiiiiiiiiiiiiiiiiiiitiiiiieesiaeeeessnebeeeeeeeeseeeeeaeeeaeae 51
SQL CREATE Database.........cccoeevviiiiiieeiiieee e 53
)] £ D PP PRRRPPPRPPPPN 53
EXAMPIE: .. e ——————————— 53
DROP or DELETE Databaseccccovvvviiiiiiiieiiiiieeececiiiee e 54
)] £ D APPSR PRPRPPPRRPPP 54
EXaMPIe: .. 54
SQL SELECT Database..........cccooevviiiiiiiiiiieeieeee e 55
)15 1 A 55
E XML e 55
SQL CREATE TaAbBIE e, 56
)] £ D APPSR PRPPPPPPPPPPN 56
B} 1= D G 56
E XML e 57
EXaMPIe: .. 57
SQL DROP or DELETE Table........ccoovviveiiiiiiiieieeeceee, 59

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

)15 1 PP 59

EXamMPIe: ... 59
SOL INSERT QUETY ...ttt oottt 60
B0}] £ D PP PRRRPPPRRPPP 60
= 1 1] 0] L= 60
Populate one table using another table: ..., 61
SOL SELECT QUETY ..ottt et 62
B0}] £ D PP PSPRPPPRRPPP 62
= 1 1] 0] L= 62
SQLWHERE ClauSEc.u i 64
)11 1 P 64
EXamMPIe: .. 64
SQL AND and OR OperatorsSccoceeuieeeeiiieeeeiineeeeineeeeanen 66
THE AND OPEIALOI: ...ttt nabennannnnne 66
)11 1 P 66
EXamMPIe: .. 66
THe OR OPEIALOL:uuiiiiiiiiiiiiiiiiiiiiiiiiii bbb ebneennenne 67
)11 1 P 67
EXamMPIe: .. 67
SQL UPDATE QUEIY ...ttt eeeeeeee e et eee e een e e 69
B0} 1] £ D AP SPRRRPPPPRPPPN 69
EXAMPIE: .. e ———————————— 69
SQL DELETE QUETY ...ttt eee e en e 71
)15 3 A 71
EXaMPIe: .. 71
SQL LIKE ClaUSe....ccuuiiiiieieieee e 73
)11 3 A 73
EXAMPIE: .. e ——————————— 74
SQL TOP ClaUSE ... iiieiiiiiie ettt e e e 75
)] £ D APPSR PRPRPPPPRPPP 75
EXaMPIe: .. 75
SQL ORDER BY ClauSe.......ceiviiiiiieeieceeeee e 77
B} 1= D G 77
EXaMPIe: .. 77
SQL GIroUP BY ... 79
)Y 1] £ D OO PRPPPPPRPPPPN 79
E XML e 79
SQL Distinct KEYWOIdoooiiiiiiiiieiiiiiiie e 81
B 1= 3 G 81

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

= 1 1] 0] L= 81

SQL SORTING RESUIS.....cceveiiiiiiiiieeeeeeeee e 83
)] £ D PP PSPRPPPRPPPP 83
EXamMPIe: ... 83
SQL CONSIraINtS.iiiiieiie e 85
NOT NULL CONSIraINt: ...cooeeiiiiiiiiiiiieeeeeeeeeeeee e 85
DEFAULT CONSIIAINT.....cciiiiiiiiiieiiieeeeeeeeeeeeee e 86
EXamMPIe: ... 86
Drop Default CONSLraiNt:oiiii e 86
UNIQUE CONSIraiNt: ..oevviieieiiieee e e e eeenaaas 87
EXamMPIe: .. 87
DROP a UNIQUE CoONSraiNt:.......ccccvviiiiiiiiiiieeeeeie e e e 87
PRIMARY KEY: .. oo 88
Create PriMary KBY: i ittt eeeaeeeeeenne 88
Delete Primary KeY: ..o e 89
FOREIGN KEY: ... oo 89
EXamMPIe: .. 89
DROP a FOREIGN KEY CoONStraint:cccoovvviiiiiiiiiiiiieeeceeeeeeeeeeeeeeeeeeee 90
(O o | ={ 01 SO0 01511 -] | A 90
EXamMPIe: .. 90
DROP @ CHECK CONSIIAINT:ccoeiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 91
IND X . i 91
EXaMPIe: .. 91
DROP a INDEX CONSraAiNt:.......ccceiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e 91
Dropping CONSLraINtS:........ovviiiii e 92
Integrity CONSIIAINTS:ooooiiiiiiiii e 92
SQL JOINS et 93
SQL JOIN TYPES: .. ittt e e e e e e e e e e e e aaaaan 94
INNER JOIN ... 94
)] £ D APPSR PRPRPPPPRPPPN 94
EXAMPIE: .. e e ———————————— 94
LEFT JOIN .. 95
)Y 1] £ D OO PRPPPPPRPPPPN 95
E XML e 95
RIGHT JOIN ... 96
)Y 1] £ D OO PRPPPPPRPPPPN 96
E XML e 96
FULL JOIN .. 97
)Y] £ D AP SPUPRPPPRRPPPN 97

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

= 1 1] 0] L= 98

S = I e | 99
)] £ D PP PSPRPPPRPPPP 99
= 1 1] 0] L= 99
(7 I] Y AN I 1@ 11 100
SY A, ettt e e eaan 100
= 1 1] o L= 100
SQL UNIONS ClaUSEcovveiiiieiiieeeeeee e 102
SY A, ettt e e eaan 102
EXamPle: ... 102
The UNION ALL ClaUSE:uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinsninnnnnsnssenennnnesnnnnnnnnes 103
)] £ D AP PP PPRRPPPPPPPTN 103
EXamMPIe: ... 104
EXAMPIE: . e e ———————————— 105
SQL NULL VAlUES....couiiiieieeeceeeeeee et 109
)11 3 PP 109
EXamMPIe: ... 109
SQL AlIaS SYNLAX ...evvieiiiii e 111
)11 3 PP 111
EXAMPIE: .. e ———————————— 111
SQL INAEXES ..cvneiiiei e 113
The CREATE INDEX ComMmMaNd:coovveiiiiiiiee e e e e 113
SINGIE-ColUuMN INUEXES:uuiiiiiiiiiiiiiiiiii i 113
UNIQUE INAEXES: ...t 113
COMPOSITE INUEXES: ...ttt ebeebeeeeaaene 114
IMPLICIE INAEXES: ... 114
The DROP INDEX COMMANG:uuuiiiiiiiiiiiiiiiiiiniinnniinnnnnennnnnennnneennennne. 114
When should indexes be avoided? ... 114
SQL ALTER TABLE Command..........ccccccvvveviieiiiiieiiieeein, 115
)] £ D AP P PP PPPRPPPPPPPTN 115
EXAMPIE: .. e ——————————— 116
SQL TRUNCATE TABLE ... 118
)11 3 P 118
EXamMPIe: .. 118
SQL - USING VIBWS ...ttt 119
Creating VIBWS: ... e e e e eeaaaas 119
EXAMIPIE. e 119
The WITH CHECK OPTION:......uuiiiiiiiiiiiiiiiiiiiiiiieinennnnnnnnnnsssssnnnnsnnnnnnnnnes 120
(@ ol b= 1AL To Jr= BV [U 120

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

INSErting ROWS iNtO @ VIBW:iiiieiieieeeie e 121

Deleting ROWS INtO @ VIBW.oiiiiiieeieiiiiie et 122
Dropping VIEBWS:ccoiiiiiiiiiiiiee e 122
SQL HAVING CLAUSE ... 123
)15 1 APPSR 123
EXamMPle: ... 123
SQL TranSaCliONSueiiiieiieeeieeeeee e e 125
Properties of TranSacCtioNS:coooiiiiiiiiiiiiiiiieeeeeeeeeee 125
TransSaction CONLIOLuuuiiiiiiiiiiiiiiii e enaanne 125
The COMMIT COMMANG:uuuiiiiiiiiiiiiiiiiiiiiiiiii e 125
EXamMPIe: ... 126
The ROLLBACK COmMMANG:uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiinienininnneennnnnnnnennnnnes 126
EXAMPIE: .. e ——————————— 126
The SAVEPOINT COomMmMaNd:coieiieiiiiiiiiiiiieee et e e 127
EXAMPIE: .. e ———————————— 127
The RELEASE SAVEPOINT Command:............uuuueummemmmmmmmmeminnnnnnnnnnnnnnns 128
The SET TRANSACTION Command:ueiiieeeerieieiiiiiineeeeeeeeeeeainnnnnns 129
SQL Wildcard Operators.........cooeveeeieeeeiiiieeeiie e e e 130
)11 PP 130
EXAMPIE: .. e ———————————— 131
SQL Date FUNCHONS........uiiiiiiiiieeieeee e 132
ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)............... 134
ADDTIME(EXPIL,EXPI2) ..o 135
CONVERT_TZ(dt,from_tZ,10 tZ)eooiiiieiiiiiiecee e, 135
(104 7 A I T 135
CURRENT_DATE and CURRENT_DATE()....uuvveeeeeiaeaaiiiiiiiieeeeea e 136
(10 I 1Y 136
CURRENT_TIME and CURRENT_TIME()uuvuieiieieeeeiiiiiiieceeee e 136
CURRENT_TIMESTAMP and CURRENT_TIMESTAMP()ccvvvveeennnnes 136
DN I =T (S2 o IO 136
DATEDIFF(EXPILEXPI2) c.coeeeiiiiiiieeeeeee ettt 136
DATE_ADD(date,INTERVAL eXPr UNIt),.......ceeeeieeeiiiiiiiiiiieeeeee e 137
DATE_SUB(date,INTERVAL eXPr Unit).......cccceuuiiiiiiiiiiieeeeiiieeeeeeiiieeeeeens 137
DATE_FORMAT(date,format)cooovviiiiiiiiiiiiieeeeeeeeeeeeeeeeee 138
DATE_SUB(date,INTERVAL €XPr UNit).........ceeeeieeriiiiiiiiiiieeeee e 140
DN (o =Y =) 140
DAYNAME(ALE) ...eeeeeeeeeeeeiiiieeeiee ettt e e e e e 140
DAYOFMONTH(AALE) oot 140
DAYOFWEEK(AALE)cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 140

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

DAYOFYEAR(GAIE)eeveeveereeeeereeeeesseeseeeeeeeeeeeseeseeseeseeseeseeseeseeseeseeneenns 140

EXTRACT(UNit FROM date)cceiiiiiiiiiiiiiiiieeeee e 141
FROM_DAYS(IN) ..eteetteieeeeeeettt ettt e e e e e e e 141
FROM_UNIXTIME(UNIX_timMestampP)cooeeeeeiiiiiiiiiiiieee e 141
FROM_UNIXTIME((unix_timestamp,format)cccoeevereiiiiiiiiiiiiinneeenn. 141
[(@10] (14T U 142
LAST_DAY(AALE) ...coeeiieieiieeeeeeeeeeee e 142
LOCALTIME and LOCALTIME() «.cceeeeiiiiiiiiiiieeeee e 142
LOCALTIMESTAMP and LOCALTIMESTAMP().....ccccuriiiiiieeeeeieiiiie 142
MAKEDATE(year,dayofyear)couuuuiiiiiee e 142
MAKETIME(hour,minute,SeCONd)...........uiiiieeiiiiiiiiiiiin e 143
MICROSECOND(EXPI)..ciiiuetttiieeeeaeeeeeaaiiieieeeeeee e e e e s aissneseeeeeeeeeessnnnnseeees 143
MINUTE(IIME) .o 143
Y (@ I (e F= 1= TP PEPTRR 143
MONTHNAME(ALE) ...cceeeiiiiiieieeee e 143
NOW () e 144
PERIOD_ADD(P,N) oottt 144
PERIOD_DIFF(PL,P2) ...t 144
(@8N I =] (o =1) I 144
SECOND(LIME)...ciiiiiiiiieieee ettt e e e e e e e e e e e e e e e e e anes 145
SEC_TO_TIME(SECONUS)....uuuuuuuuruuirinniniiiiiitiiniiiesisesinesnensneseeeeeeessnneennene 145
STR_TO_DATE(Str,format)ouviiiiiiiiiiieeeeee e, 145
SUBDATE(date,INTERVAL expr unit) and SUBDATE(expr,days)......... 145
SUBTIME(EXPIL,EXPI2) ...eeeeueuueiiiiieuuunuiuueieuisessssseenssssnnsnnnssseesenenneseneneeeees 146
S ST B AN I 146
TIME(BXI) -t 146
TIMEDIFF(EXPIL,EXPI2) ...uuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiesisesesseaseeseaesnesaneennnne 146
TIMESTAMP(expr), TIMESTAMP(eXprl,eXpr2).....ccccccceeeeeeeeeeeeeeennnnnnnnn. 147
TIMESTAMPADD(unit,interval,datetime_expr)ccccccccvveriemmeiininnnnnns 147
TIMESTAMPDIFF(unit,datetime_exprl,datetime_expr2).............c.ccc.u... 147
TIME_FORMAT(tIme,format)ccoooeeeiiiiiiiie e, 148
TIME_TO_SEC(IIME) ...ttt ettt e e e 148
IO I BN 25T (o F= L=) SRR 148
UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date).........ccvvvvrervriereeeeennnnnn. 148
UTC_DATE, UTC_DATE() ..ottt eeeeteeeeeee e ettt e e e eiieteeee e e e e e 149
UTC_TIME, UTC_TIME() +.eee et iitteeeieieee et e e e e e e e 149
UTC_TIMESTAMP, UTC_TIMESTAMP() «.covvviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 149
WEEK(date[,MOde])coeeeeeeeeeeeeeeeeeeeeeeeee 149
WEEKDAY (JALE)eeeieeiiiiiiieiiee e e ee ettt et e e e e e e e e s nnnaeeeeeee s 150

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

WEEKOFYEAR(AALE).......cuuiiiiiiiieeieiiiiie et 150

YEAR(GALE) ...ttt 150
YEARWEEK (date), YEARWEEK(date,mode)ccccccevveeeeveeneeenen, 151
SQL Temporary Tables.......coooiviiiiii e, 152
= 1 1] o] = O 152
Dropping Temporary Tables: ... 153
SQL Clone Tables.......ccouuiiiiieiieeeeeee e 154
EXampPle: ... 154
) (<] I PP 154
) (<] ORI 154
B (=T 01 PP PPRRPPPPPPPPN 155
SQL SUD QUETIES ... cceiiciie e 156
Subqueries with the SELECT Statement:...........cccooooeeviiiiiiiiiiiiieeeeeeeeeens 156
EXAMPIE: .. e ———————————— 157
Subqueries with the INSERT Statement:euuuveiiiiiiiiiiiiiiiiiiiiiinns 157
EXAMPIE: .. e ———————————— 157
Subqueries with the UPDATE Statement:ccoooeeeeviiiiiiiiiiiiieeeeeeeeeens 158
EXamMPIe: ... 158
Subqueries with the DELETE Statement:...........cccooooeeviiiiiiiiiiiieeeeeeeeeens 158
EXAMPIE: .. e ———————————— 159
SQL T USINg SEQUENCES......ccvvieiiiiiieeeiieeeee e 160
Using AUTO_INCREMENT COlUMN:oooviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 160
EXamMPle: ... 160
Obtain AUTO_INCREMENT ValU€S:ccooiiiiiiiiiiiie e 161
PERL EXample: ... 161
PHP EXample:. ... 161
Renumbering an EXiSting SEQUENCE:cccoeevviiiiiiiiiiie e 161
Starting a Sequence at a Particular Value:.............coovvveeiiiiiiieee e, 161
SQL T Handling Duplicates.........cccooevviiiieiiiiiiieiiieceeeeeeee, 163
)] £ D AP P PP PPPRPPPPPPPTN 163
EXAMPIE: .. e ——————————— 163
Y@ T I | = ox 1o P 165
Preventing SQL INJECHION:.........i i 166
The LIKE QUANAAIY:uuiiiiiiiiiiiiiiiiiiiiiiiiii s 166
SQL Useful FUNCLIONSooviiiieii e 167
ABS(X) 1ieiiieit e e e e e e e —aaaaas 176
ACOS(X) ettt e e e e e e e e e ——aaaaas 176
XS] N[04 RSP 176
FN I 2 NN 0 PRSPPI 176

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

ATANZIY,X) ovoeveeeeeeeeeeee et eeee e e e ee et et et e et ee et es et 177

BIT_AND(EXPIeSSION) ..cceeeviriiiieeeeeeeeeeiiiiiaa e e e e e e eeeetaisn e e e e e e eeeeenran e aeeas 177
BIT_COUNT(NUMENC_VAIUE) ...oeeiiiiieieiicee e 177
BIT_OR(EXPIESSION)....ciiiiiiieiiiie e e eeee et e e e e e e e e e e e e e e e e e 177
(O | T 178
(O | I 1N I 178
CONV/(N,from_base,to_base)ccceeeeeiiiiiiiiiiiiii e, 178
(O 25T 0,4 T 178
(O @ I, T 179
DEGREES(X) oo 179
EXP (X e 179
0 10] I 179
FORMAT(X,D) .o 180
GREATEST(n1,n2,n3,..........) 180
INTERVAL(N,N1,N2,N3,..........) ettt — i —————————————— 180
INTERVAL(N,N1,N2,N3,..........)PP 180
LEAST(NLNZ2,N3,NZ,.....) oot 181
0 1€, T 181
LOG(B,X) oot 181
LOGLO(XK) it 181
MOD(N,M) .. 181
(@ 1O I (1) T 182
T 182
POW (XY) oo 182
POWER (XY oo 182
RADIANS(X) oo 182
ROUNDC(X) oo 183
ROUND(X,D) ..o 183
] [T N, TS 183
0 1102 T 183
1@ 3 I 0, L 184
STD(EXPIESSION) ...eevviiuiiiieeiiiiieieeteeeeeesaeaeeeebbbbbbbbebeeee e ebebbbbbebebeneeenensannne 184
STDDEV(EXPIrESSION) ...uuuvututiuiiiuttirurtssususseunsessssssesssssseseeaeeseeeeeeeeseaee 184
L1722 184
QLI (O N G0) 184
ASCII(SI) oo 186
BIN(N) oo 187
o VL I] 1) 187
CHAR(N,... [USING charset_name])ccccuuevemmmmmmmmmmiiiiiiiiiiiiiniiineninnnns 187

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CHAR_LENGTH(SI) evvvoeveeeeeeeeeeeeeeeeeeeeeteeee et eeee et eneeseeseeseeseseeeseeseeneeeos 187

CHARACTER_LENGTH(SI) ..vvvvvtuviuiriiiiiiiinsenerneneneeennennensnsennnnnnnennnnnnnnns 188
CONCAT(SIL,SI2,...) ettt e e e e 188
CONCAT_WS(separator,Strl,Str2,...) cocceeeeeeeeeeiicii e eeeeeeeeien e e e e eeeennns 188
CONV/(N,from_base,to_base)ccoeueeiiiiiiiiiiiiii e 188
ELT(N,SrL,Str2,Str3,...) e e 189
EXPORT_SET(bits,on,off[,separator[,number_of bits]])...........cccceeeei. 189
FIELD(Str,StrL,Str2,Str3,...) s oo eeeiii e 189
FIND _IN_SET(Str,StIISt)..cceureiiieeiei e 189
FORMAT(X,D) .o 189
HEX(N_OF_S) oo 190
INSERT(SIr,POS,I€N,NEWSI) ... 190
INSTR(SEL,SUDSEI) .. 190
LCASE(SIN) oo 191
LEFT(SIIEN) o 191
LENGTH(SII) oo 191
LOAD_FILE(file_Name)coooiiiiiiiiiiieee 191
LOCATE(substr,str), LOCATE(SUDSLI,Str,POS).....cccovviiiiiiiiiiiiiiiiiiiiiieeee, 191
LOWER(SIN) e 192
LPAD(SEr,IEN,padstr)......ccooiiiiiiiiiie 192
LTRIM(SI) oo 192
MAKE_SET(DItS,StrL,Str2,...) cooeeie e 192
MID(SErLPOS,IEN) ... 193
(@ 1O I (1) TS 193
(@ 1O I = I I = N I 1] 1) 193
(@245 (11) N 193
POSITION(SUBSEI IN SEr) oo 193
(@181 B I (= 1) 193
eXPr REGEXP PAEIN ... 194
REPEAT(SI,COUNT)....coiiiiiiiieiie e 194
REPLACE(Str,from_Str,t0 Str).....ccooviiiiiiiiee e 194
REVERSE(SIN)..cco i 195
RIGHT(SIIEN) e 195
RPAD(SIIEN,pAdSI) .o 195
RTRIM(SI) oo, 195
SOUNDEX(SI) vvvvvvttvtutiuiieeieieeieeieseeesssssssessassssssaessasssnnsseeasaeraraaaaa——a———————. 196
eXPrl SOUNDS LIKE €XPI2ccouuiiiiiiieiiieeeiiieeeeie e e e ean e 196
Y 2 A O = () 196
STRCMP(SIIL, SII2)..uuuueeeeeeeiiiieiiiieruruerenneneerreerenererre—————————————————————————. 196

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SUBSTRING(SI,PO0S) wevttiiiieeeeiiieiiiiiiie e e e e e e e eeettes s e e e e e e eeeeasann e e e aeeeeeennns 197

SUBSTRING(Str FROM POS)...cciiiiiiiiiiieeeeeeeeeeiiiiaeeeeeeeeeeeaiiinnnseeeeeeeeeenes 197
SUBSTRING(SI,POS,IEN) .. 197
SUBSTRING(str FROM poS FOR 1€N)uvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienens 197
SUBSTRING_INDEX(str,delim,count).........ccceuuiiiiiiiiiiiiiiiiiie e 197
TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str) 198
TRIM([remstr FROM] SEI) .oviieiiiiiie e 198
0[O NS =Y 11) PR 198
L8 | € 1 I 198
UPPER(SI) ceiitiiiiiiiiieeeeeeeeeeeeeeeee ettt 199

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Overview

L tutorial gives unique learning on Structured Query Language and it helps to make practice on SQL

commands which provides immediate results. SQL is a language of database, it includes database creation,
deletion, fetching rows and modifying rows etc.

SQL is an ANSI (American National Standards Institute) standard, but there are many different versions of the
SQL language.

What is SQL?

SQL is Structured Query Language, which is a computer language for storing, manipulating and retrieving data
stored in relational database.

SQL is the standard language for Relation Database System. All relational database management systems like
MySQL, MS Access, Oracle, Sybase, Informix, postgres and SQL Server use SQL as standard database
language.

Also, they are using different dialects, such as:
T MS SQL Server using T-SQL,
9 Oracle using PL/SQL,

9 MS Access version of SQL is called JET SQL (native format) etc.

Why SQL?

9 Allows users to access data in relational database management systems.

{ Allows users to describe the data.

9 Allows users to define the data in database and manipulate that data.

Allows to embed within other languages using SQL modules, libraries & pre-compilers.

Allows users to create and drop databases and tables.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Allows users to create view, stored procedure, functions in a database.

Allows users to set permissions on tables, procedures and views

History:

1970 -- Dr. E. F. "Ted" of IBM is known as the father of relational databases. He described a relational model
for databases.

1974 -- Structured Query Language appeared.

1978 -- IBM worked to develop Codd's ideas and released a product named System/R.

1986 -- IBM developed the first prototype of relational database and standardized by ANSI. The first relational
database was released by Relational Software and its later becoming Oracle.

SQL Process:

When you are executing an SQL command for any RDBMS, the system determines the best way to carry out your
request and SQL engine figures out how to interpret the task.

=a =4 —a =

There are various components included in the process. These components are Query Dispatcher, Optimization
Engines, Classic Query Engine and SQL Query Engine, etc. Classic query engine handles all non-SQL queries,
but SQL query engine won't handle logical files.

Following is a simple diagram showing SQL Architecture:

SQL Query
Query Language < Parser + Optimizer
Processor
y File Manager
DBMS +
Engine Transaction manager

Physical Datab ase

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Commands:

The standard SQL commands to interact with relational databases are CREATE, SELECT, INSERT, UPDATE,
DELETE and DROP. These commands can be classified into groups based on their nature:

DDL- Data Definition Language:

Command Description

CREATE Creates a new table, a view of a table, or other object in database
ALTER Modifies an existing database object, such as a table.

DROP Deletes an entire table, a view of a table or other object in the database.

DML- Data Manipulation Language:

Command Description
INSERT Creates a record
UPDATE Modifies records
DELETE Deletes records

DCL: Data ControLanguage:

Command Description
GRANT Gives a privilege to user
REVOKE Takes back privileges granted from user

DQL- Data Query Language:
Command Description

SELECT Retrieves certain records from one or more tables

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL RDBMS Concepts
Whatis RDBMS?

DBMS stands for Relational Database Management System. RDBMS is the basis for SQL and for all

modern database systems like MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

A Relational database management system (RDBMS) is a database management system (DBMS) that is based on
the relational model as introduced by E. F. Codd.

What istable?

The dataO in RDBMS is stored in database objects called tables . The table is a collection of related data entries
and it consists of columns and rows.

Remember, a table is the most common and simplest form of data storage in a relational database. Following is
the example of a CUSTOMERS table:

U N Cj— —— —— +

|ID|NAME | AGE | ADDRESS |SALARY |

S dbommes + + +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |

| 2| Khilan | 25| Delhi | 1500.00 |

| 3| kaushik | 23| Kota | 2000.00 |

| 4| Chaitali| 25| Mumbai | 6500.00 |

| 5|Hardik | 27 | Bhopal | 8500.00 |
| 6| Komal | 22|MP | 4500.00 |

| 7| Muffy | 24 |Indore |10000.00 |

T — E— + + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

What is field?

Every table is broken up into smaller entities called fields. The fields in the CUSTOMERS table consist of ID,
NAME, AGE, ADDRESS and SALARY.

A field is a column in a table that is designed to maintain specific information about every record in the table.

What is recorar row?

A record, also called a row of data, is each individual entry that exists in a table. For example, there are 7 records
in the above CUSTOMERS table. Following is a single row of data or record in the CUSTOMERS table:

fomen dhoccomecoes S R . +
| 1|Ramesh | 32| Ahmedabad | 2000.00 |
dhmes dheccomoooes S — fhomecmmmenes N +

A record is a horizontal entity in a table.

What is column?

A column is a vertical entity in a table that contains all information associated with a specific field in a table.

For example, a column in the CUSTOMERS table is ADDRESS, which represents location description and would
consist of the following:

| ADDRESS |

| Ahmedabad |
| Delhi |

| Kota |

| Mumbai |

| Bhopal |

| MP

| Indore |

E O S +

What is NULL value?

A NULL value in a table is a value in a field that appears to be blank, which means a field with a NULL value is a
field with no value.

It is very important to understand that a NULL value is different than a zero value or a field that contains spaces. A
field with a NULL value is one that has been left blank during record creation.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Constraints:

Constraints are the rules enforced on data columns on table. These are used to limit the type of data that can go
into a table. This ensures the accuracy and reliability of the data in the database.

Constraints could be column level or table level. Column level constraints are applied only to one column, whereas
table level constraints are applied to the whole table.

Following are commonly used constraints available in SQL:

NOT NULL Constraint: Ensures that a column cannot have NULL value.

DEFAULT Constraint: Provides a default value for a column when none is specified.

UNIQUE Constraint: Ensures that all values in a column are different.

PRIMARY Key: Uniquely identified each rows/records in a database table.

FOREIGN Key: Uniquely identified a rows/records in any another database table.

CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy certain conditions.
INDEX: Use to create and retrieve data from the database very quickly.

NOT NULL Constraint:

By default, a column can hold NULL values. If you do not want a column to have a NULL value, then you need to
define such constraint on this column specifying that NULL is now not allowed for that column.

= =4 -8 _—a_a_9a_2

A NULL is not the same as no data, rather, it represents unknown data.
Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns, three of which,
ID and NAME and AGE, specify not to accept NULLSs:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

If CUSTOMERS table has already been created, then to add a NOT NULL constraint to SALARY column in Oracle
and MySQL, you would write a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18,2) NO T NULL;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

DEFAULT Constraint

The DEFAULT constraint provides a default value to a column when the INSERT INTO statement does not provide
a specific value.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, SALARY
column is set to 5000.00 by default, so in case INSERT INTO statement does not provide a value for this column.
then by default this column would be set to 5000.00.

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2) DEFAULT 5000.00,

PRIMARY KEY (ID)
);

If CUSTOMERS table has already been created, then to add a DFAULT constraint to SALARY column, you would
write a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) DEFAULT 5000.00;

Drop Default Constraint:
To drop a DEFAULT constraint, use the following SQL:

ALTER TABLE CUSTOMERS

ALTER COLUMN SALARY DROP DEFAULT;

UNIQUE Constraint:

The UNIQUE Constraint prevents two records from having identical values in a particular column. In the
CUSTOMERS table, for example, you might want to prevent two or more people from having identical age.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, AGE
column is set to UNIQUE, so that you can not have two records with same age:

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL UNIQUE,
ADDRESS CHAR (25),

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

If CUSTOMERS table has already been created, then to add a UNIQUE constraint to AGE column, you would write
a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL UNIQUE;

You can also use following syntax, which supports naming the constraint in multiple columns as well:
ALTER TABLE CUSTOMERS

ADD CONSTRAINT myUniqueConstraint UNIQUE(AGE, SALARY);

DROP a UNIQUE Constraint:

To drop a UNIQUE constraint, use the following SQL:

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myUniqueConstraint;

If you are using MySQL, then you can use the following syntax:

ALTER TABLE CUSTOMERS

DROP INDEX myUniqueConstraint;

PRIMARY Key:

A primary key is a field in a table which uniquely identifies each row/record in a database table. Primary keys must
contain unique values. A primary key column cannot have NULL values.

A table can have only one primary key, which may consist of single or multiple fields. When multiple fields are used
as a primary key, they are called a composite key .

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

Note: You would use these concepts while creating database tables.

Create Primary Key:

Here is the syntax to define ID attribute as a primary key in a CUSTOMERS table.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)
);

To create a PRIMARY KEY constraint on the "ID" column when CUSTOMERS table already exists, use the
following SQL syntax:

ALTER TABLE CUSTOMER ADD PRIMARY KEY (ID);

NOTE: If you use the ALTER TABLE statement to add a primary key, the primary key column(s) must already have
been declared to not contain NULL values (when the table was first created).

For defining a PRIMARY KEY constraint on multiple columns, use the following SQL syntax:
CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID, NAME)

);

To create a PRIMARY KEY constraint on the "ID" and "NAMES" columns when CUSTOMERS table already exists,
use the following SQL syntax:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT PK_CUSTID PRIMARY KEY (ID, NAME);

Delete Primary Key:

You can clear the primary key constraints from the table, Use Syntax:

ALTER TABLE CUSTOMERS DROP PRIMARY KEY ;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

FOREIGN Key:

A foreign key is a key used to link two tables together. This is sometimes called a referencing key.
Foreign Key is a column or a combination of columns whose values match a Primary Key in a different table.

The relationship between 2 tables matches the Primary Key in one of the tables with a Foreign Key in the
second table.

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

Example:

Consider the structure of the two tables as follows:

CUSTOMERS table:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)
);
ORDERS table:

CREATE TABLE ORDERS (
ID INT NOT NULL,
DATE DATETIME,
CUSTOMER_ID INT references CUSTOMERS(ID),
AMOUNT double,

PRIMARY KEY (ID)
);

If ORDERS table has already been created, and the foreign key has not yet been set, use the syntax for specifying
a foreign key by altering a table.

ALTER TABLE ORDERS
ADD FOREIGN KEY (Customer_ID) REFERENCES CUSTOMERS (ID);

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

DROP a FOREIGN KEY Constraint:

To drop a FOREIGN KEY constraint, use the following SQL:

ALTER TABLE ORDERS

DROP FOREIGN KEY;

CHECK Constraint:

The CHECK Constraint enables a condition to check the value being entered into a record. If the condition
evaluates to false, the record violates the constraint and isn@ entered into the table.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, we add a
CHECK with AGE column, so that you can not have any CUSTOMER below 18 years:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL CHECK (AGE >= 18),
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)
);

If CUSTOMERS table has already been created, then to add a CHECK constraint to AGE column, you would write
a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL CHECK (AGE >=18);

You can also use following syntax, which supports naming the constraint in multiple columns as well:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT myCheckConstraint CHECK(AGE >= 18);
DROP a CHECK Constraint:
To drop a CHECK constraint, use the following SQL. This syntax does not work with MySQL:

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myCheckConstraint;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

INDEX:

The INDEX is used to create and retrieve data from the database very quickly. Index can be created by using
single or group of columns in a table. When index is created, it is assigned a ROWID for each row before it sorts
out the data.

Proper indexes are good for performance in large databases, but you need to be careful while creating index.
Selection of fields depends on what you are using in your SQL queries.

Example:
For example, the following SQL creates a new table called CUSTOMERS and adds five columns:
CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

Now, you can create index on single or multiple columns using the following syntax:
CREATE INDEX index_name

ON table_name (columnl, column2.....);

To create an INDEX on AGE column, to optimize the search on customers for a particular age, following is the SQL
syntax:

CREATE INDEX idx_age

ON CUSTOMERS (AGE);

DROP aINDEX Constraint:

To drop an INDEX constraint, use the following SQL:

ALTER TABLE CUSTOMERS

DROP INDEX idx_age;

Data Integrity:

The following categories of the data integrity exist with each RDBMS:

T Entity Integrity : There are no duplicate rows in a table.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

T Domain Integrity : Enforces valid entries for a given column by restricting the type, the format, or the
range of values.
T Referential Integrity : Rows cannot be deleted which are used by other records.

T User-Defined Integrity : Enforces some specific business rules that do not fall into entity, domain, or
referential integrity.

Database Normalization

Database normalization is the process of efficiently organizing data in a database. There are two reasons of the
normalization process:

q Eliminating redundant data, for example, storing the same data in more than one table.

T Ensuring data dependencies make sense.

Both of these are worthy goals as they reduce the amount of space a database consumes and ensure that data is
logically stored. Normalization consists of a series of guidelines that help guide you in creating a good database
structure.

Normalization guidelines are divided into normal forms; think of form as the format or the way a database structure
is laid out. The aim of normal forms is to organize the database structure so that it complies with the rules of first
normal form, then second normal form, and finally third normal form.

It's your choice to take it further and go to fourth normal form, fifth normal form, and so on, but generally speaking,
third normal form is enough.

T First Normal Form (1NF)
T Second Normal Form (2NF)
T Third Normal Form (3NF)

First Normal Form

First normal form (1NF) sets the very basic rules for an organized database:

T Define the data items required, because they become the columns in a table. Place related data items in a
table.

T Ensure that there are no repeating groups of data.

T Ensure that there is a primary key.

First Rule of 1NF:

You must define the data items. This means looking at the data to be stored, organizing the data into columns,
defining what type of data each column contains, and finally putting related columns into their own table.

For example, you put all the columns relating to locations of meetings in the Location table, those relating to
members in the MemberDetails table, and so on.

Second Rule of 1NF;:

The next step is ensuring that there are no repeating groups of data. Consider we have the following table:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),

ORDERS VARCHAR(155)

);

So if we populate this table for a single customer having multiple orders, then it would be something as follows:

ID NAME AGE ADDRESS

100 Sachin 36 Lower West Side
100 Sachin 36 Lower West Side
100 Sachin 36 Lower West Side

ORDERS
Cannon XL-200
Battery XL-200

Tripod Large

But as per 1NF, we need to ensure that there are no repeating groups of data. So let us break above table into two

parts and join them using a key as follows:

CUSTOMERS table:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),

PRIMARY KEY (ID)
);

This table would have the following record:

1D NAME AGE
100 Sachin 36
ORDERS table:

CREATE TABLE ORDERS(
ID INT NOT NULL,
CUSTOMER_ID INT NOT NULL,

ORDERS VARCHAR(155),

ADDRESS

Lower West Side

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

PRIMARY KEY (ID)
);

This table would have the following records:

ID CUSTOMER_ID ORDERS

10 100 Cannon XL-200
11 100 Battery XL-200
12 100 Tripod Large

Third Rule of 1NF:

The final rule of the first normal form, create a primary key for each table which we have already created.

SecondNormal Form

Second normal form states that it should meet all the rules for 1INF and there must be no partial dependences of
any of the columns on the primary key:

Consider a customer-order relation and you want to store customer ID, customer name, order ID and order detalil,
and date of purchase:

CREATE TABLE CUSTOMERS(
CUST_ID INT NOT NULL,
CUST_NAME VARCHAR (20) NOT NULL,
ORDER_ID INT NOT NULL,
ORDER_DETAIL VARCHAR (20) NOT NULL,
SALE_DATE DATETIME,

PRIMARY KEY (CUST_ID, ORDER_ID)

);

This table is in first normal form, in that it obeys all the rules of first normal form. In this table, the primary key
consists of CUST_ID and ORDER_ID. Combined, they are unique assuming same customer would hardly order
same thing.

However, the table is not in second normal form because there are partial dependencies of primary keys and
columns. CUST_NAME is dependent on CUST_ID, and there's no real link between a customer's name and what
he purchased. Order detail and purchase date are also dependent on ORDER_ID, but they are not dependent on
CUST_ID, because there's no link between a CUST_ID and an ORDER_DETAIL or their SALE_DATE.

To make this table comply with second normal form, you need to separate the columns into three tables.

First, create a table to store the customer details as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CREATE TABLE CUSTOMERS(
CUST_ID INT NOT NULL,
CUST_NAME VARCHAR (20) NOT NULL,

PRIMARY KEY (CUST_ID)

);
Next, create a table to store details of each order:

CREATE TABLE ORDERS(
ORDER_ID INT NOT NULL,
ORDER_DETAIL VARCHAR (20) NOT NULL,

PRIMARY KEY (ORDER_ID)
)i
Finally, create a third table storing just CUST_ID and ORDER_ID to keep track of all the orders for a customer:
CREATE TABLE CUSTMERORDERS(
CUST_ID INT NOT NULL,
ORDER_ID INT NOT NULL,

SALE_DATE DATETIME,

PRIMARY KEY (CUST_ID, ORDER_ID)

ThirdNormal Form

A table is in third normal form when the following conditions are met:
q It is in second normal form.
T All nonprimary fields are dependent on the primary key.

The dependency of nonprimary fields is between the data. For example, in the below table, street name, city, and
state are unbreakably bound to the zip code.

CREATE TABLE CUSTOMERS(
CUST_ID INT NOT NULL,
CUST_NAME VARCHAR (20) NOT NULL,
DOB DATE,

STREET VARCHAR(200),

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CITY VARCHAR(100),
STATE VARCHAR(100),
ZIP VARCHAR(12),
EMAIL_ID VARCHAR(256),

PRIMARY KEY (CUST_ID)
);

The dependency between zip code and address is called a transitive dependency. To comply with third normal
form, all you need to do is move the Street, City, and State fields into their own table, which you can call the Zip
Code table:

CREATE TABLE ADDRESS(
ZIP VARCHAR(12),
STREET VARCHAR(200),
CITY VARCHAR(100),
STATE VARCHAR(100),

PRIMARY KEY (ZIP)
);
Next, alter the CUSTOMERS table as follows:

CREATE TABLE CUSTOMERS(
CUST ID INT NOT NULL,
CUST_NAME VARCHAR (20) NOT NULL,
DOB DATE,
ZIP VARCHAR(12),
EMAIL_ID VARCHAR(256),

PRIMARY KEY (CUST_ID)

);

The advantages of removing transitive dependencies are mainly twofold. First, the amount of data duplication is
reduced and therefore your database becomes smaller.

The second advantage is data integrity. When duplicated data changes, there's a big risk of updating only some of
the data, especially if it's spread out in a number of different places in the database. For example, if address and
zip code data were stored in three or four different tables, then any changes in zip codes would need to ripple out
to every record in those three or four tables.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL RDBMS Databases

here are many popular RDBMS available to work with. This tutorial gives a brief overview of few most

popular RDBMS. This would help you to compare their basic features.

MySQL is an open source SQL database, which is developed by Swedish company MySQL AB. MySQL is
pronounced "my ess-que-ell," in contrast with SQL, pronounced "sequel."

MySQL is supporting many different platforms including Microsoft Windows, the major Linux distributions, UNIX,
and Mac OS X.

MySQL has free and paid versions, depending on its usage (non-commercial/commercial) and features. MySQL
comes with a very fast, multi-threaded, multi-user, and robust SQL database server.

History:

9 Development of MySQL by Michael Widenius & David Axmark beginning in 1994,
9 Firstinternal release on 23 May 1995.

f Windows version was released on 8 January 1998 for Windows 95 and NT.
Version 3.23: beta from June 2000, production release January 2001.

Version 4.0: beta from August 2002, production release March 2003 (unions).

9 Version 4.01: beta from August 2003, Jyoti adopts MySQL for database tracking.
9 Version 4.1: beta from June 2004, production release October 2004.

9 Version 5.0: beta from March 2005, production release October 2005.

 Sun Microsystems acquired MySQL AB on 26 February 2008.

I Version 5.1: production release 27 November 2008.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Features:

High Performance.

1 High Availability.

I Scalability and Flexibility Run anything.

f Robust Transactional Support.

Web and Data Warehouse Strengths.

9 Strong Data Protection.

Comprehensive Application Development.
I Management Ease.

9 Open Source Freedom and 24 x 7 Support.

9 Lowest Total Cost of Ownership.

MS SQL Server

MS SQL Server is a Relational Database Management System developed by Microsoft Inc. Its primary query
languages are:

 T-SQL.

f ANSI SQL.

History:

9 1987 - Sybase releases SQL Server for UNIX.

1988 - Microsoft, Sybase, and Aston-Tate port SQL Server to OS/2.
1989 - Microsoft, Sybase, and Aston-Tate release SQL Server 1.0 for 0S/2.
1990 - SQL Server 1.1 is released with support for Windows 3.0 clients.

9 Aston-Tate drops out of SQL Server development.

2000 - Microsoft releases SQL Server 2000.

9 2001 - Microsoft releases XML for SQL Server Web Release 1 (download).
2002 - Microsoft releases SQLXML 2.0 (renamed from XML for SQL Server).

2002 - Microsoft releases SQLXML 3.0.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1

2005 - Microsoft releases SQL Server 2005 on November 7th, 2005.

Features:

High Performance.

1 High Availability.
 Database mirroring.
 Database snapshots.
I CLR integration.

9 Service Broker.

9 DDL triggers.
Ranking functions.

f Row version-based isolation levels.
XML integration.

f TRY...CATCH.

I Database Mail.

ORACLE

It is a very large and multi-user database management system. Oracle is a relational database management
system developed by 'Oracle Corporation'.

Oracle works to efficiently manage its resource, a database of information, among the multiple clients requesting
and sending data in the network.

It is an excellent database server choice for client/server computing. Oracle supports all major operating systems
for both clients and servers, including MSDOS, NetWare, UnixWare, OS/2 and most UNIX flavors.

History:

Oracle began in 1977 and celebrating its 32 wonderful years in the industry (from 1977 to 2009).

1

1977 - Larry Ellison, Bob Miner and Ed Oates founded Software Development Laboratories to undertake
development work.

1979 - Version 2.0 of Oracle was released and it became first commercial relational database and first SQL
database. The company changed its name to Relational Software Inc. (RSI).

1981 - RSI started developing tools for Oracle.

1982 - RSI was renamed to Oracle Corporation.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1983 - Oracle released version 3.0, rewritten in C language and ran on multiple platforms.

1984 - Oracle version 4.0 was released. It contained features like concurrency control - multi-version read
consistency, etc.

1985 - Oracle version 4.0 was released. It contained features like concurrency control - multi-version read
consistency, etc.

2007 - Oracle has released Oraclellg. The new version focused on better partitioning, easy migration, etc.

Features:
Concurrency
 Read Consistency

9 Locking Mechanisms
Y Quiesce Database
Portability

I Self-managing database

 SQL*Plus
I ASM
 Scheduler

f Resource Manager
 Data Warehousing
{ Materialized views
9 Bitmap indexes

9 Table compression
9 Parallel Execution
Analytic SQL

9 Data mining

9 Partitioning

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

MSACCESS

This is one of the most popular Microsoft products. Microsoft Access is an entry-level database management
software. MS Access database is not only an inexpensive but also powerful database for small-scale projects.

MS Access uses the Jet database engine, which utilizes a specific SQL language dialect (sometimes referred to
as Jet SQL).

MS Access comes with the professional edition of MS Office package. MS Access has easy-to-use intuitive
graphical interface.

1992 - Access version 1.0 was released.

I 1993 - Access 1.1 released to improve compatibility with inclusion of the Access Basic programming
language.

9 The most significant transition was from Access 97 to Access 2000.

2007 - Access 2007, a new database format was introduced ACCDB which supports complex data types
such as multi valued and attachment fields.

Features:

I Users can create tables, queries, forms and reports and connect them together with macros.

9 The import and export of data to many formats including Excel, Outlook, ASCII, dBase, Paradox, FoxPro,
SQL Server, Oracle, ODBC, etc.

9 There is also the Jet Database format (MDB or ACCDB in Access 2007), which can contain the application
and data in one file. This makes it very convenient to distribute the entire application to another user, who
can run it in disconnected environments.

Microsoft Access offers parameterized queries. These queries and Access tables can be referenced from
other programs like VB6 and .NET through DAO or ADO.

 The desktop editions of Microsoft SQL Server can be used with Access as an alternative to the Jet Database
Engine.

9 Microsoft Access is a file server-based database. Unlike client-server relational database management

systems (RDBMS), Microsoft Access does not implement database triggers, stored procedures, or
transaction logging.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Syntax

L is followed by unique set of rules and guidelines called Syntax. This tutorial gives you a quick start with

SQL by listing all the basic SQL Syntax:

All the SQL statements start with any of the keywords like SELECT, INSERT, UPDATE, DELETE, ALTER, DROP,
CREATE, USE, SHOW and all the statements end with a semicolon (;).

Important point to be noted is that SQL is case insensitive , which means SELECT and select have same meaning
in SQL statements, but MySQL makes difference in table names. So if you are working with MySQL, then you
need to give table names as they exist in the database.

SQL SELECT Statement:

SELECT columnl , column2 columnN
FROM table_name ;

SQL DISTINCT Clause:

SELECT DISTINCT columnl , column2 columnN
FROM table name ;

SQL WHERE Clause:

SELECT columnl , column2 columnN
FROM table_name
WHERE CONDITION

SQL AND/OR Clause:

SELECT columnl , column2 columnN
FROM table_name
WHERE CONDITION 1 { AND OR CONDITION 2;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL INClause:

SELECT columnl , column2 columnN
FROM table_name
WHERE column_name IN (val -1, val -2,... val -N);

SQL BETWEEN Clause:

SELECT columnl , column2 columnN
FROM table_name
WHERE column_name BETWEEN val -1 ANDval - 2;

SQLLIKEClause:

SELECT columnl , column2 columnN
FROM table_name
WHERE column_name LIKE { PATTERN};

SQL ORDER BY Clause:

SELECT columnl , column2 columnN
FROM table_name

WHERE CONDITION

ORDER BY column_name {ASQ DESG;

SQL GROUP BY Clause:

SELECT SUM column_name)
FROM table_name
WHERE CONDITION
GROUP BY column_name;

SQL COUNT Clause:

SELECT COUNT column_name)
FROM table _name
WHERE CONDITION

SQL HAVING Clause:

SELECT SUM column_name)

FROM table _name

WHERE CONDITION

GROUP BY column_name

HAVING (arithematic function condition);

SQL CREATE TABLE Statement:

CREATE TABLE table_name (

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

columnl datatype
column2 datatype
column3 datatype

columnN datatype
PRIMARY KEY(one or more columns)

);

SQL DROP TABLE Statement:

DROP TABLE table_name ;

SQL CREATE INBEt®ement

CREATE UNIQUE INDEX index_name
ON table_name (columnl , column2 ,.. columnN);

SQL DROP INDEX Statement

ALTER TABLE table_name
DROP INDEX index_name ;

SQL DESC Statement

DESC table_name ;

SQL TRUNCATE TABLE Statement:

TRUNCATE TABLE table_name ;

SQL ALTER TABLE Statement:

ALTER TABLE table_name { ADD DROPMODIFY; column_name {data_ype };

SQIALTER TABLE Statement (Rename)

ALTER TABLE table_name RENAME TO new_table _name

SQL INSERT INTO Statement:

INSERT INTO table_name (columnl , column2 ... columnN)
VALUES (valuel , value2 ... valueN);

SQL UPDATE Statement:

UPDATE table_name

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SET columnl = valuel , column2 = value2 ... columnN =valueN
[WHERE CONDITION ;

SQL DELETE Statement:

DELETE FROM table_name
WHERE { CONDITION;

SQL CREATE DATABASE Statement:

CREATE DATABASE database_name ;

SQL DROP DATABASE Statement:

DROP DATABASE database_name ;

SQL USE Statement:

USE DATABASE database_name ;

SQL COMMIT Statement:

COMMIT

SQL ROLLBACK Statement:

ROLLBACK

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Data Types

L data type is an attribute that specifies type of data of any object. Each column, variable and expression

has related data type in SQL.

You would use these data types while creating your tables. You would choose a particular data type for a table

column based on your requirement.

SQL Server offers six categories of data types for your use:

Exact Numeric Data Types:

DATA TYPE
Bigint

Int

Smallint
Tinyint

Bit

Decimal
Numeric
Money

Smallmoney

Approximate Numeric Data Types:

DATA TYPE

Float

Real

FROM
-9,223,372,036,854,775,808
-2,147,483,648

-32,768

0

0

-10"38 +1

-10"38 +1
-922,337,203,685,477.5808

-214,748.3648

FROM
-1.79E + 308

-3.40E + 38

TO
9,223,372,036,854,775,807
2,147,483,647

32,767

255

1

10738 -1

10738 -1
+922,337,203,685,477.5807

+214,748.3647

TO
1.79E + 308

3.40E + 38

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Date and Time Data Types:

DATA TYPE

Datetime

Smalldatetime

Date

Time

FROM TO
Jan 1, 1753 Dec 31, 9999
Jan 1, 1900 Jun 6, 2079

Stores a date like June 30, 1991

Stores a time of day like 12:30 P.M.

Note: Here, datetime has 3.33 milliseconds accuracy where as smalldatetime has 1 minute accuracy.

Character Strings Data Types:

DATA TYPE FROM TO

Char Char Maximum length of 8,000 characters.(Fixed length non-Unicode
characters)

Varchar Varchar Maximum of 8,000 characters.(Variable-length non-Unicode data).
Maximum length of 231characters, Variable-length non-Unicode data

varchar(max) varchar(max) (SQL Server 3005 only). g

T Variable-length non-Unicode data with a maximum length of

ext text

2,147,483,647 characters.

Unicode Character Strings Data Types:

DATA TYPE
Nchar

Nvarchar

nvarchar(max)

Ntext

Description
Maximum length of 4,000 characters.(Fixed length Unicode)
Maximum length of 4,000 characters.(Variable length Unicode)

Maximum length of 231characters (SQL Server 2005 only).(Variable length
Unicode)

Maximum length of 1,073,741,823 characters. (Variable length Unicode)

Binary Data Types:

DATA TYPE
Binary

Varbinary

Description
Maximum length of 8,000 bytes(Fixed-length binary data)

Maximum length of 8,000 bytes.(Variable length binary data)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Maximum length of 231 bytes (SQL Server 2005 only). (Variable length Binary

varbinary(max) data)

Image Maximum length of 2,147,483,647 bytes. (Variable length Binary Data)

Misc Data Types:

DATA TYPE Description
. Stores values of various SQL Server-supported data types, except text, ntext, and
sql_variant X
timestamp.
. Stores a database-wide unique number that gets updated every time a row gets
timestamp
updated
uniqueidentifier Stores a globally unique identifier (GUID)
xml Stores XML data. You can store xml instances in a column or a variable (SQL Server
2005 only).
cursor Reference to a cursor object
table Stores a result set for later processing

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Operators

What is an Operator iBQL?

n operator is a reserved word or a character used primarily in an SQL statement's WHERE clause to

perform operation(s), such as comparisons and arithmetic operations.

Operators are used to specify conditions in an SQL statement and to serve as conjunctions for multiple conditions
in a statement.

f
f
f
f

Arithmetic operators
Comparison operators
Logical operators

Operators used to negate conditions

SQL Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example
+ Addition - Adds values on either side of the operator ar D]
give 30
; g a - b will
= Subtraction - Subtracts right hand operand from left hand operand give -10
* Multiplication - Multiplies values on either side of the operator a'* ol
give 200
—_ . . b/ a will
/ Division - Divides left hand operand by right hand operand give 2
. .] b % a will
% Modulus - Divides left hand operand by right hand operand and returns remainder give 0

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Here are simple examples showing usage of SQL Arithmetic Operators:

SQL> select 10+ 20;

Apoemememe +
| 10+ 20 |
Apoemememe +
I 30 |
Apoemememe +

1 row in set (0.00 sec)

SQL> select 10 * 20;

e +
| 10 * 20 |
e +
| 200 |
e +

1 row in set (0.00 sec)

SQL> select 10 / 5;

oo +
| 10 / 5 |
oo +
| 2.0000 |
| N +

1 row in set (0.03 sec)

SQL> select 12 % b5;

Lhemererees +
| 12 % 5 |
Lhomcrerees T
I 2 |
Lhomcrerees T

1 row in set (0.00 sec)

SQL Comparison Operators:

Assume variable a holds 10 and variable b holds 20, then:

Operator Description Example

_ . . - (a=Db)is

= Checks if the values of two operands are equal or not, if yes then condition becomes true. not true

= Checks if the values of two operands are equal or not, if values are not equal then (a'=h)

B condition becomes true. is true.

< Checks if the values of two operands are equal or not, if values are not equal then (a<>b)
condition becomes true. is true.

S Checks if the value of left operand is greater than the value of right operand, if yes then (a>Db)is
condition becomes true. not true.

< Checks if the value of left operand is less than the value of right operand, if yes then (a<b)is
condition becomes true. true.

- Checks if the value of left operand is greater than or equal to the value of right operand, if |(§n>o:t b)

B yes then condition becomes true. true

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Checks if the value of left operand is less than or equal to the value of right operand, if

<= yes then condition becomes true.

< Checks if the value of left operand is not less than the value of right operand, if yes then
’ condition becomes true.

I> Checks if the value of left operand is not greater than the value of right operand, if yes

then condition becomes true.
Consider the CUSTOMERS table having the following records:

SQL> SELECT * FROM CUSTOMERS

B B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B B e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
R C Fomeee e oo +

7 rows in set (0.00 sec)

Here are simple examples showing usage of SQL Comparison Operators:

SQL> SELECT * FROM CUSTOMERS WHERE SALARY 5000 ;

R C Fomeee + + +
| ID | NAME | AGE| ADDRESS| SALARY |
R C Fomeee + + +
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
= B + + +

3 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE SALARY 2000 ;

Fomem e +ommee + + +
| ID | NAME | AGE| ADDRESS | SALARY |
Fomem e +ommee + + +
| 1| Ramesh | 32 | Ahmedabad | 2000.00 |
| 3| kaushik | 23 | Kota | 2000.00 |
b o + + +

2 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE SALARY 2000 ;

Jhomes o CISSSSS + + +
| ID | NAME | AGE| ADDRESS| SALARY |
TS E + + +
2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
TS E + + +

5 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE SALAR¥ 2000;
pomme dbemomemmmes AP + + +

(a<=b)
is true.

(al<b)
is false.

(a!'>h)
is true.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

|+---- Fommmmmeeee E + + L—
2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
E - E + + +

ID | NAME | AGE| ADDRESS| SALARY

5 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE SALAR¥ 6500;
+

E - E + +
| ID | NAME | AGE| ADDRESS| SALARY |
B B + + +
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
S B + + +

3 rows in set (0.00 sec)

SQL Logical Operators:

Here is a list of all the logical operators available in SQL.

Operator
ALL

AND

ANY

BETWEEN

EXISTS

IN

LIKE

NOT

OR
IS NULL

UNIQUE

Description
The ALL operator is used to compare a value to all values in another value set.
The AND operator allows the existence of multiple conditions in an SQL statement's WHERE clause.

The ANY operator is used to compare a value to any applicable value in the list according to the
condition.

The BETWEEN operator is used to search for values that are within a set of values, given the
minimum value and the maximum value.

The EXISTS operator is used to search for the presence of a row in a specified table that meets
certain criteria.

The IN operator is used to compare a value to a list of literal values that have been specified.
The LIKE operator is used to compare a value to similar values using wildcard operators.

The NOT operator reverses the meaning of the logical operator with which it is used. Eg: NOT
EXISTS, NOT BETWEEN, NOT IN, etc. This is a negate operator.

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.
The NULL operator is used to compare a value with a NULL value.

The UNIQUE operator searches every row of a specified table for uniqueness (no duplicates).

Consider the CUSTOMERS table having the following records:

SQL> SELECT * FROM CUSTOMERS
fhomme dhocseceemes [N {becsemsemses . +

| ID | NAME | AGE| ADDRESS | SALARY |
e —— IS o o +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
C R +-meee tommmeeemeee tommmeeeee +

7 rows in set (0.00 sec)

Here are simple examples showing usage of SQL Comparison Operators:

SQL> SELECT * FROM CUSTOMERS WHERE AGE 25 AND SALARY >= 6500;

S Fj + + +
| ID | NAME | AGE| ADDRESS| SALARY |
foecme dhecmoomooes oo + + +
| 4| Chatali | 25 | Mumbai | 6500.00 |
| 5| Hardik | 27 | Bhopal | 8500.00 |
fhocme qhocmcoeoes oo + + +

2 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE AGE 25 OR SALARY >= 6500;

R C +ommee e oo +
| ID | NAME | AGE| ADDRESS | SALARY |
R C +ommee e oo +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
R C +ommee e oo +

5 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE AGE IS NOT NULL

Jhomes o CESSE e e +
| ID | NAME | AGE| ADDRESS | SALARY |
Jhomes o CESSE e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Jhomes o CESSE e e +

7 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE NAME LIKKo0%' ;

SO — S + + +
| ID | NAME | AGE| ADDRESS| SALARY |
RS — S + + +
| 6| Komal | 22| MP | 4500.00 |
RS — S + + +

1 row in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE AGE IN 25, 27);
dpocms dhememcesees F— + + +

| ID | NAME | AGE| ADDRESS| SALARY |
fhomme dhocseceemes R + + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
C R +emeee + + +

3 rows in set (0.00 sec)

SQL> SELECT * FROM CUSTOMERS WHERE AGE BETWEEN AND 27;
T A + + +

| ID | NAME | AGE| ADDRESS| SALARY |
C R +emeee + + +
2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
B B + + +

3 rows in set (0.00 sec)

SQL> SELECT AGE FROM CUSTOMERS
WHERE EXISTS (SELECT AGE FROM CUSTOMERS WHERE SALARY 6500);

7 rows in set (0.02 sec)

SQL> SELECT * FROM CUSTOMERS

WHERE AGE> ALL (SELECT AGE FROM CUSTOMERS WHERE SALARY 6500);
Jhemmm hememeeee E + + +

| ID | NAME | AGE| ADDRESS | SALARY
frocce gememeee B + +

| 1| Ramesh | 32 | Ahmedabad | 2000.00
frocce gememeee B + +

1 row in set (0.02 sec)

+— +—

SQL> SELECT * FROM CUSTOMERS
WHERE AGE> ANY (SELECT AGE FROM CUSTOMERS WHERE SALARY 6500);

= B e rmoeeee +
| ID | NAME | AGE| ADDRESS | SALARY |
= B e rmoeeee +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
Jhomes o CISSSSS e e +

4 rows in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Expressions

n expression is a combination of one or more values, operators, and SQL functions that evaluate to a

value.

SQL EXPRESSIONS are like formulas and they are written in query language. You can also use them to query the
database for specific set of data.

Consider the basic syntax of the SELECT statement as follows:
SELECT columnl , column2 , columnN

FROM table_name
WHERE CONDITION EXPRESSION

There are different types of SQL expressions, which are mentioned below:

SQL- Boolean Expressions:

SQL Boolean Expressions fetch the data on the basis of matching single value. Following is the syntax:
SELECT columnl , column2 , columnN

FROM table_name
WHERE SINGLE VALUE MATCHTING EXPRESSION

Consider the CUSTOMERS table having the following records:

SQL> SELECT * FROM CUSTOMERS

dhomes dhommmmemees CESSE e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B T [— e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
E RERE SRR E R + + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

7 rows in set (0.00 sec)

Here is simple example showing usage of SQL Boolean Expressions:

SQL> SELECT * FROM CUSTOMERS WHERE SALARY 10000 ;

tommm Ao +omem- + + +
| ID | NAME | AGE| ADDRESS| SALARY |
tommm Ao +omem- + + +
| 7| Muffy | 24 | Indore | 10000.00 |
tommm Ao +omem- + + +

1 row in set (0.00 sec)

SQL:- Numeric Expression:

This expression is used to perform any mathematical operation in any query. Following is the syntax:
SELECT numerical_expression as OPERATION_NAME

[FROM table_name
WHERE CONDITION ;

Here numerical_expression is used for mathematical expression or any formula. Following is a simple examples
showing usage of SQL Numeric Expressions:

SQL> SELECT (15 + 6) AS ADDITION

S| N +
| ADDITION |
S| N +
I 21 |
S| N +

1 row in set (0.00 sec)

There are several built-in functions like avg(), sum(), count(), etc., to perform what is known as aggregate data
calculations against a table or a specific table column.

SQL> SELECT COUNT*) AS "RECORDS" FROM CUSTOMERS

oo +
| RECORDS
oo +
| 7|
oo +

1 row in set (0.00 sec)

SQL:- Date Expressions:

Date Expressions return current system date and time values:

SQL> SELECT CURRENT_TIMESTAMP

dr o memsee e +
| Current_Timestamp |
dr o memsee e +
| 2009-11-12 06:40: 23 |
A mmmmmmmmmmsmsceemas +

1 row in set (0.00 sec)

Another date expression is as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL> SELECT GETDATE);;
+

| GETDATE
+

| 2009-10-22 12:07:18.140
+

1 row in set (0.00 sec)

+— +— +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL CREATE Database

he SQL CREATE DATABASE statement is used to create new SQL database.

Basic syntax of CREATE DATABASE statement is as follows:

CREATE DATABASEDatabaseName ;

Always database name should be unique within the RDBMS.

Example:

If you want to create new database <testDB>, then CREATE DATABASE statement would be as follows:
SQL> CREATE DATABASE testDB ;

Make sure you have admin privilege before creating any database. Once a database is created, you can check it in
the list of databases as follows:

SQL> SHOW DATABASES

)
L
9
o
D
%2}
®
+— +

| information_schema
| AMROOD

| TUTORIALSPOINT
| mysql

| orig

| test

| testDB

7 rows in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

DROP or DELETE Database

he SQL DROP DATABASE statement is used to drop an existing database in SQL schema.

Basic syntax of DROP DATABASE statement is as follows:

DROP DATABASEDatabaseName ;

Always database name should be unique within the RDBMS.

Example:

If you want to delete an existing database <testDB>, then DROP DATABASE statement would be as follows:

SQL> DROP DATABASE testDB ;

NOTE: Be careful before using this operation because by deleting an existing database would result in loss of
complete information stored in the database.

Make sure you have admin privilege before dropping any database. Once a database is dropped, you can check it.

SQL> in the list of databases as follows:SHOW DATABASES
b +

|
+
| information_schema |
| AMROOD |
| TUTORIALSPOINT |
| mysal I
| orig I
| test |

+

6 rows in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL SELECT Database

hen you have multiple databases in your SQL Schema, then before starting your operation, you

would need to select a database where all the operations would be performed.

The SQL USE statement is used to select any existing database in SQL schema.

Syntax:

Basic syntax of USE statement is as follows:

USE DatabaseName ;

Always database name should be unique within the RDBMS.

Example:

You can check available databases as follows:

SQL> SHOW DATABASES

+
I
+
information_schema [
AMROOD |
TUTORIALSPOINT |
mysq| [
orig [
test |
+

6 rows in set (0.00 sec)

Now, if you want to work with AMROOD database, then you can execute the following SQL command and start
working with AMROOD database:

SQL> USE AMROOD

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL CREATE Table

eating a basic table involves naming the table and defining its columns and each column's data type.

The SQL CREATE TABLE statement is used to create a new table.

Syntax:
Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE table_name (
columnl datatype
column2 datatype
column3 datatype

columnN datatype
PRIMARY KEY(one or more columns)

);

CREATE TABLE is the keyword telling the database system what you want to do. In this case, you want to create
a new table. The unique name or identifier for the table follows the CREATE TABLE statement.

Then in brackets comes the list defining each column in the table and what sort of data type it is. The syntax
becomes clearer with an example below.

A copy of an existing table can be created using a combination of the CREATE TABLE statement and the SELECT
statement. You can check complete details at Create Table Using another Table

Create Table Using another Table

A copy of an existing table can be created using a combination of the CREATE TABLE statement and the SELECT
statement.

The new table has the same column definitions. All columns or specific columns can be selected.

When you create a new table using existing table, new table would be populated using existing values in the old
table.

Syntax:

The basic syntax for creating a table from another table is as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CREATE TABLE NEW_TABLE_NAME AS
SELECT [columnl, column2 ... columnN]
FROM EXISTING_TABLE_NAME
[WHERE]

Here, columnl, column2...are the fields of existing table and same would be used to create fields of new table.

Example:

Following is an example, which would create a table SALARY using CUSTOMERS table and having fields
customer ID and customer SALARY:

SQL> CREATE TABLE SALARY AS
SELECT ID, SALARY
FROM CUSTOMERS

This would create new table SALARY, which would have the following records:

S| N 1
| ID | SALARY |
+

8500.00
4500.00

I I
I I
I I
| 6500.00 |
I I
I I
| 10000.00 |

Example:

Following is an example, which creates a CUSTOMERS table with ID as primary key and NOT NULL are the
constraints showing that these fileds can not be NULL while creating records in this table:

SQL> CREATE TABLE CUSTOMERS

ID INT NOT NULL ,
NAME VARCHAR 20) NOT NULL,
AGE INT NOT NULL ,

ADDRESS CHAR(25)
SALARY DECIMAL (18, 2),
PRIMARY KEY (D)

);

You can verify if your table has been created successfully by looking at the message displayed by the SQL server,
otherwise you can use DESC command as follows:

SQL> DESC CUSTOMERS

+ + B [— + + +
| Field | Type | Null | Key | Default | Extra |
+ + B [— + + +
| ID | int (11) | NO | PRI | | |
| NAME | wvarchar (20) | NO | | [[
| AGE | int (11) | NO | | | |
| ADDRESS| char (25) | YES | | NULL | |
| SALARY | decimal (18,2) | YES | | NULL | |
+ + A — [— + + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

5 rows in set (0.00 sec)

Now, you have CUSTOMERS table available in your database which you can use to store required information
related to customers.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL DROP or DELETE Table

he SQL DROP TABLE statement is used to remove a table definition and all data, indexes, triggers,

constraints, and permission specifications for that table.
NOTE: You have to be careful while using this command because once a table is deleted then all the information

available in the table would also be lost forever.
Basic syntax of DROP TABLE statement is as follows:

DROP TABLE table_name ;

Let us first verify CUSTOMERS table and then we would delete it from the database:

SQL> DESC CUSTOMERS

+ + CIISSSSSS CESSSSE + + +
| Field | Type | Null | Key | Default | Extra |
+ + CIISSSSSS CESSSSE + + +
| ID | int (11) | NO | PRI | | |
| NAME | varchar (20) | NO | [[[
| AGE | int (11) | NO | | | |
| ADDRESS| char (25) | YES | | NULL | |
| SALARY | decimal (18,2) | YES | | NULL | |
+ + CIISSSSSS CESSSSE + + +
5 rows in set (0.00 sec)

This means CUSTOMERS table is available in the database, so let us drop it as follows:

SQL> DROP TABLE CUSTOMERS
Query OK 0 rows affected (0.01 sec)

Now, if you would try DESC command, then you would get error as follows:

SQL> DESC CUSTOMERS
ERROR1146 (42S02): Table 'TEST.CUSTOMERS' doesn 't exist

Here, TEST is database name which we are using for our examples.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL INSERT Query

he SQL INSERT INTO Statement is used to add new rows of data to a table in the database.

There are two basic syntaxes of INSERT INTO statement as follows:

INSERT INTO TABLE_NAME (columnl , column2 , column3 ,.. columnN)]
VALUES (valuel , value2 , value3 ,.. valueN);

Here, columnl, column2,...columnN are the names of the columns in the table into which you want to insert data.

You may not need to specify the column(s) name in the SQL query if you are adding values for all the columns of
the table. But make sure the order of the values is in the same order as the columns in the table. The SQL INSERT
INTO syntax would be as follows:

INSERT INTO TABLE_NAME VALUES (valuel , value2 ,value3 ,.. valueN);

Example:

Following statements would create six records in CUSTOMERS table:

INSERT INTO CUSTOMERS (ID, NAMEAGE ADDRESSSALARY
VALUES (1, 'Ramesh' , 32, 'Ahmedabad’ , 2000.00);

INSERT INTO CUSTOMERS (ID, NAMEAGE ADDRESSSALARYj
VALUES (2, 'Khilan' , 25, 'Delhi" , 1500.00);

INSERT INTO CUSTOMERS (ID, NAMEAGE ADDRESSSALARY
VALUES (3, ‘'kaushik' , 23, 'Kota’ , 2000.00);

INSERT INTO CUSTOMERS (ID, NAMEAGE ADDRESSSALARYj
VALUES (4, 'Chaitali’ , 25, 'Mumbai' , 6500.00);

INSERT INTO CUSTOMERS (ID, NAMEAGE ADDRESSSALARY
VALUES (5, 'Hardik' , 27, 'Bhopal' , 8500.00);

INSERT INTO CUSTOMERS (ID, NAMEAGE ADDRESSSALARYj
VALUES (6, 'Komal' , 22, 'MP', 4500.00);

You can create a record in CUSTOMERS table using second syntax as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

INSERT INTO CUSTOMERS
VALUES (7, 'Muffy’ , 24, ‘Indore’ , 10000.00);

All the above statements would produce the following records in CUSTOMERS table:

B B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B B e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
R C Fomeee e oo +

Populate one table using another table:

You can populate data into a table through select statement over another table provided another table has a set of
fields, which are required to populate first table. Here is the syntax:

INSERT INTO first_table_name [(columnl, column2, ... columnN)]
SELECT columnl , column2 , ... columnN
FROM second_table_name
[WHERE condition [;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL SELECT Query

L SELECT Statement is used to fetch the data from a database table which returns data in the form of

result table. These result tables are called result-sets.
The basic syntax of SELECT statement is as follows:
SELECT columnl , column2 , columnN FROM table_name ;

Here, columnl, column2...are the fields of a table whose values you want to fetch. If you want to fetch all the fields
available in the field, then you can use the following syntax:

SELECT * FROM table_name ;

Example:

Consider the CUSTOMERS table having the following records:

et +-ee- Tr Tr Tr
| ID | NAME | AGE| ADDRESS | SALARY |
[T [— + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
B T [— Ao Ammmmmm—ee +

Following is an example, which would fetch ID, Name and Salary fields of the customers available in
CUSTOMERS table:

SQL> SELECTID, NAME SALARY FROM CUSTOMERS

This would produce the following result:

o+ + +
| ID | NAME | SALARY |

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

+omm + + +
1	Ramesh	2000.00
2	Khilan	1500.00
3	kaushik	2000.00
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
+--- + + +

If you want to fetch all the fields of CUSTOMERS table, then use the following query:

SQL> SELECT * FROM CUSTOMERS

This would produce the following result:

B T B — rommeemees frmmeoees +
| ID | NAME | AGE| ADDRESS | SALARY |
B T B — rommeemees frmmeoees +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
E SRR e +ommee e oo +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL WHERE Clause

he SQL WHERE clause is used to specify a condition while fetching the data from single table or joining

with multiple tables.

If the given condition is satisfied, then only it returns specific value from the table. You would use WHERE clause
to filter the records and fetching only necessary records.

The WHERE clause is not only used in SELECT statement, but it is also used in UPDATE, DELETE statement,
etc., which we would examine in subsequent chapters.

The basic syntax of SELECT statement with WHERE clause is as follows:
SELECT columnl , column2 , columnN
FROM table_name
WHERE condition]

You can specify a condition using comparison or logical operators like >, <, =, LIKE, NOT etc. Below examples
would make this concept clear.

Example:

Consider the CUSTOMERS table having the following records:

[T [— + + +
| ID | NAME | AGE| ADDRESS | SALARY |
[T [— + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
B T [— Ao Ammmmmm—ee +

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table where salary
is greater than 2000:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sql/sql-operators.htm

SQL> SELECTID, NAME SALARY
FROM CUSTOMERS
WHERE SALARY> 2000;

This would produce the following result:

-+ + +
| ID | NAME | SALARY |
-+ + +
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
-+ + +

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table for a
customer with name Hardik . Here, it is important to note that all the strings should be given inside single quotes (")
where as numeric values should be given without any quote as in above example:

SQL> SELECTID, NAME SALARY

FROM CUSTOMERS
WHERE NAME- 'Hardik' ;

This would produce the following result:

o+ + +
| ID | NAME | SALARY |
o+ + +
| 5| Hardik | 8500.00 |
IR + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL AND and OR Operators

he SQL AND and OR operators are used to combine multiple conditions to narrow data in an SQL

statement. These two operators are called conjunctive operators.

These operators provide a means to make multiple comparisons with different operators in the same SQL
statement.

The AND Operator:

The AND operator allows the existence of multiple conditions in an SQL statement's WHERE clause.
Syntax:
The basic syntax of AND operator with WHERE clause is as follows:

SELECT columnl , column2 , columnN

FROM table_name
WHERE conditionl] AND [condition2]... AND [conditionN |;

You can combine N number of conditions using AND operator. For an action to be taken by the SQL statement,
whether it be a transaction or query, all conditions separated by the AND must be TRUE.

Example:

Consider the CUSTOMERS table having the following records:

[T [— + + +
| ID | NAME | AGE| ADDRESS | SALARY |
[T [— + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
T [— + + +

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table where salary
is greater than 2000 AND age is less tan 25 years:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL> SELECTID, NAME SALARY
FROM CUSTOMERS
WHERE SALARY> 2000 AND age < 25;

This would produce the following result:

+o- 4 + +
| ID | NAME | SALARY |
+o- 4 + +
| 6| Komal | 4500.00 |
| 7| Muffy | 10000.00 |
+o- 4 + +

The OR Operator:

The OR operator is used to combine multiple conditions in an SQL statement's WHERE clause.
Syntax:
The basic syntax of OR operator with WHERE clause is as follows:

SELECT columnl , column2 , columnN

FROM table_name
WHERE conditionl] OR[condition2]... OR [conditionN]

You can combine N number of conditions using OR operator. For an action to be taken by the SQL statement,
whether it be a transaction or query, only any ONE of the conditions separated by the OR must be TRUE.

Example:

Consider the CUSTOMERS table having the following records:

= B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
= B e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Jhomes o CISSSSS e e +

Following is an example, which would fetch ID, Name and Salary fields from the CUSTOMERS table where salary
is greater than 2000 OR age is less tan 25 years:

SQL> SELECTID, NAME SALARY

FROM CUSTOMERS
WHERE SALARY> 2000 OR age < 25;

This would produce the following result:

o+ + +
| ID | NAME | SALARY |
o+ + +
| 3| kaushik | 2000.00 |
| 4| Chaitali | 6500.00 |

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
e+ + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL UPDATE Query

he SQL UPDATE Query is used to modify the existing records in a table.

You can use WHERE clause with UPDATE query to update selected rows, otherwise all the rows would be
affected.

The basic syntax of UPDATE query with WHERE clause is as follows:
UPDATE table_name

SET columnl = valuel , column2 = value2 ..., columnN = valueN
WHERE condition |;

You can combine N number of conditions using AND or OR operators.

Example:

Consider the CUSTOMERS table having the following records:

dhomes dhommmmemees CESSE s b +
| ID | NAME | AGE| ADDRESS | SALARY |
dhomes dhommmmemees CESSE s b +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
T [— + + +

Following is an example, which would update ADDRESS for a customer whose ID is 6:
SQL> UPDATE CUSTOMERS

SET ADDRESS= 'Pune’
WHERE ID = 6;

Now, CUSTOMERS table would have the following records:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

e [— e e +
| ID | NAME | AGE| ADDRESS | SALARY |
e [— e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	Pune	4500.00
7	Muffy	24	Indore	10000.00
S T +-meee tommmeeemeee tommmeeeee +

If you want to modify all ADDRESS and SALARY column values in CUSTOMERS table, you do not need to use
WHERE clause and UPDATE query would be as follows:

SQL> UPDATE CUSTOMERS
SET ADDRESS= 'Pune’ , SALARY = 1000.00 ;

Now, CUSTOMERS table would have the following records:

E SRR e +ommee + + +
| ID | NAME | AGE| ADDRESS| SALARY |
E SRR e +ommee + + +
1	Ramesh	32	Pune	1000.00
2	Khilan	25	Pune	1000.00
3	kaushik	23	Pune	1000.00
4	Chaitali	25	Pune	1000.00
5	Hardik	27	Pune	1000.00
6	Komal	22	Pune	1000.00
7	Muffy	24	Pune	1000.00
B T B — + + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL DELETE Query

he SQL DELETE Query is used to delete the existing records from a table.

You can use WHERE clause with DELETE query to delete selected rows, otherwise all the records would be
deleted.

The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table_name
WHERE condition |;

You can combine N number of conditions using AND or OR operators.

Example:

Consider the CUSTOMERS table having the following records:

[T [— + + +
| ID | NAME | AGE| ADDRESS | SALARY |
[T [— + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
dhomes dhommmmemees CESSE s b +

Following is an example, which would DELETE a customer, whose ID is 6:

SQL> DELETE FROM CUSTOMERS
WHERE ID = 6;

Now, CUSTOMERS table would have the following records:

frecm= dreccecmeecs R 4rosmmemsemss droemmemsmss +

| ID | NAME | AGE| ADDRESS | SALARY |

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

B [— e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
B [— e e +

If you want to DELETE all the records from CUSTOMERS table, you do not need to use WHERE clause and
DELETE query would be as follows:

SQL> DELETE FROM CUSTOMERS

Now, CUSTOMERS table would not have any record.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL LIKE Clause

he SQL LIKE clause is used to compare a value to similar values using wildcard operators. There are two

wildcards used in conjunction with the LIKE operator:
9 The percent sign (%)
q The underscore ()

The percent sign represents zero, one, or multiple characters. The underscore represents a single number or
character. The symbols can be used in combinations.

Syntax:
The basic syntax of % and _is as follows:

SELECT FROM table_name
WHERE column LIKE "XXXX%'

or

SELECT FROM table_name
WHERE column LIKE "%XXXX%'

or

SELECT FROM table_name
WHERE column LIKE "XXXX '

or

SELECT FROM table_name
WHERE column LIKE ' _XXXX'

or

SELECT FROM table_name
WHERE column LIKE " XXXX_'

You can combine N number of conditions using AND or OR operators. Here, XXXX could be any numeric or string
value.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Here are number of examples showing WHERE part having different LIKE clause with ‘%' and '_' operators:
Statement Description
WHERE SALARY LIKE '200%' Finds any values that start with 200

WHERE SALARY LIKE . . -
'96200%' Finds any values that have 200 in any position

WHERE SALARY LIKE '_00% Finds any values that have 00 in the second and third positions

WHERE SALARY LIKE

2 % % Finds any values that start with 2 and are at least 3 characters in length

WHERE SALARY LIKE '%2' Finds any values that end with 2
WHERE SALARY LIKE ' 2%3' Finds any values that have a 2 in the second position and end with a 3

WHERE SALARY LIKE '2___ 3" Finds any values in a five-digit number that start with 2 and end with 3

Let us take a real example, consider the CUSTOMERS table having the following records:

S B rommeemees frmmeoees +
| ID | NAME | AGE| ADDRESS | SALARY |
R C Fomeee e oo +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
= B e e +

Following is an example, which would display all the records from CUSTOMERS table where SALARY starts with
200:

SQL> SELECT * FROM CUSTOMERS
WHERE SALARY LIKE '200%" ;

This would produce the following result:

Jhomes o CISSSSS e e +
| ID | NAME | AGE| ADDRESS | SALARY |
Jhomes o CISSSSS e e +
| 1| Ramesh | 32 | Ahmedabad | 2000.00 |
| 3| kaushik | 23 | Kota | 2000.00 |
TS E e e +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL TOP Clause

he SQL TOP clause is used to fetch a TOP N number or X percent records from a table.

Note: All the databases do not support TOP clause. For example MySQL supports LIMIT clause to fetch limited
number of records and Oracle uses ROWNUM to fetch limited number of records.

The basic syntax of TOP clause with SELECT statement would be as follows:
SELECT TOP number | percent column_name (s)

FROM table_name
WHERE condition]

Example:

Consider the CUSTOMERS table having the following records:
dhomes dhommmmemees CESSE s b +
| ID | NAME | AGE| ADDRESS | SALARY |
dhomes dhommmmemees CESSE s b +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
dhomes dhommmmemees CESSE s b +

Following is an example on SQL server, which would fetch top 3 records from CUSTOMERS table:

SQL> SELECT TOP 3 * FROM CUSTOMERS

This would produce the following result:

drecms dreccomsees dhommee +

| ID | NAME | AGE| ADDRESS
R — +

| 1| Ramesh | 32 | Ahmedabad

SALARY

+
I
+
I

— +— +

2000.00

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

| 2 | Khilan | 25 | Delhi | 1500.00 |
3 | kaushik | 23 | Kota | 2000.00 |
C E — + + +

If you are using MySQL server, then here is an equivalent example:

SQL> SELECT * FROM CUSTOMERS
LIMIT 3;

This would produce the following result:

[dhemme +

+ +
| ID | NAME | AGE| ADDRESS | SALARY |
C E — + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
Jhmmmm o f — + + +

If you are using Oracle server, then here is an equivalent example:

SQL> SELECT * FROM CUSTOMERS
WHERE ROWNUM:= 3;

This would produce the following result:

oerms dhomoooees e +

+ +
| ID | NAME | AGE| ADDRESS | SALARY |
Jhmmmm o f — + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
b o + + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL ORDER BY Clause

he SQL ORDER BY clause is used to sort the data in ascending or descending order, based on one or

more columns. Some database sorts query results in ascending order by default.

The basic syntax of ORDER BY clause is as follows:
SELECT column - list
FROM table_name

[WHERE condition |
[ORDER BY columnl, column2, .. columnN] [ASC | DESC;

You can use more than one column in the ORDER BY clause. Make sure whatever column you are using to sort,
that column should be in column-list.

Example:

Consider the CUSTOMERS table having the following records:

[T [— + + +
| ID | NAME | AGE| ADDRESS | SALARY |
[T [— + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
B T [— Ao Ammmmmm—ee +

Following is an example, which would sort the result in ascending order by NAME and SALARY:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME SALARY

This would produce the following result:

dhoeme dhoommeseee F— + + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

ID | NAME | AGE| ADDRESS | SALARY

!l----- Fommemeeeee +-meee tommmeeemeee tommmeeeee L—
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
3	kaushik	23	Kota	2000.00
2	Khilan	25	Delhi	1500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
1	Ramesh	32	Ahmedabad	2000.00
e [— e e +

Following is an example, which would sort the result in descending order by NAME:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME DESC

This would produce the following result:

B T B — rommeemees frmmeoees +
| ID | NAME | AGE| ADDRESS | SALARY |
B T B — rommeemees frmmeoees +
1	Ramesh	32	Ahmedabad	2000.00
7	Muffy	24	Indore	10000.00
6	Komal	22	MP	4500.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
5	Hardik	27	Bhopal	8500.00
4	Chaitali	25	Mumbai	6500.00
E SRR e +ommee e oo +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Group By

he SQL GROUP BY clause is used in collaboration with the SELECT statement to arrange identical data

into groups.

The GROUP BY clause follows the WHERE clause in a SELECT statement and precedes the ORDER BY clause.

Syntax:

The basic syntax of GROUP BY clause is given below. The GROUP BY clause must follow the conditions in the
WHERE clause and must precede the ORDER BY clause if one is used.

SELECT columnl , column2
FROM table_name

WHERE conditions]
GROUP BY columnl, column2
ORDER BY columnl, column2

Example:

Consider the CUSTOMERS table having the following records:
dhomes dhommmmemees CESSE s b +
| ID | NAME | AGE| ADDRESS | SALARY |
dhomes dhommmmemees CESSE s b +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
T [— + + +

If you want to know the total amount of salary on each customer, then GROUP BY query would be as follows:

SQL> SELECT NAME SUM SALARY FROM CUSTOMERS
GROUP BY NAME

This would produce the following result:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

+ + +
| NAME | SUM SALARY |
+ + +
Chaitali	6500.00
Hardik	8500.00
kaushik	2000.00
Khilan	1500.00
Komal	4500.00
Muffy	10000.00
Ramesh	2000.00
+ + +

Now, let us have following table where CUSTOMERS table has the following records with duplicate names:

C R +-meee tommmeeemeee tommmeeeee +
| ID | NAME | AGE| ADDRESS | SALARY |
R C +ommee e oo +
1	Ramesh	32	Ahmedabad	2000.00
2	Ramesh	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	kaushik	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
R C +ommee e oo +

Now again, if you want to know the total amount of salary on each customer, then GROUP BY query would be as
follows:

SQL> SELECT NAME SUM SALARY FROM CUSTOMERS
GROUP BY NAME

This would produce the following result:

+ + +
| NAME | SUMSALARY |
+ + +
Hardik	8500.00
kaushik	8500.00
Komal	4500.00
Muffy	10000.00
Ramesh	3500.00
+ + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Distinct Keyword

he SQL DISTINCT keyword is used in conjunction with SELECT statement to eliminate all the duplicate

records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table. While fetching such records, it
makes more sense to fetch only unique records instead of fetching duplicate records.

The basic syntax of DISTINCT keyword to eliminate duplicate records is as follows:
SELECT DISTINCT columnl , column2 ,..... columnN

FROM table_name
WHERE condition]

Example:

Consider the CUSTOMERS table having the following records:
dhomes dhommmmemees CESSE s b +
| ID | NAME | AGE| ADDRESS | SALARY |
dhomes dhommmmemees CESSE s b +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
[T [— + + +

First, let us see how the following SELECT query returns duplicate salary records:

SQL> SELECT SALARY FROM CUSTOMERS
ORDER BY SALARY

This would produce the following result where salary 2000 is coming twice which is a duplicate record from the

original table.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

wn
>
—
>
Py}
-<
+— +

1500.00
2000.00
2000.00
4500.00
6500.00
8500.00
10000.00
e — +

Now, let us use DISTINCT keyword with the above SELECT query and see the result:

SQL> SELECT DISTINCT SALARY FROM CUSTOMERS
ORDER BY SALARY

This would produce the following result where we do not have any duplicate entry:

oo +
| SALARY |

| 1500.00
| 2000.00
| 4500.00
| 6500.00
| 8500.00
| 10000.00

f——

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL SORTING Results

he SQL ORDER BY clause is used to sort the data in ascending or descending order, based on one or

more columns. Some databases sort query results in ascending order by default.

Syntax:

The basic syntax of ORDER BY clause which would be used to sort result in ascending or descending order is as
follows:

SELECT column - list
FROM table_name

[WHERE condition |
[ORDER BY columnl , column2 , .. columnN] [ASC | DESC;

You can use more than one column in the ORDER BY clause. Make sure whatever column you are using to sort,
that column should be in column-list.

Example:

Consider the CUSTOMERS table having the following records:

[T [— + + +
| ID | NAME | AGE| ADDRESS | SALARY |
[T [— + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
B T [— Ao Ammmmmm—ee +

Following is an example, which would sort the result in ascending order by NAME and SALARY:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME SALARY

This would produce the following result:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

B B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B B e e +
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
3	kaushik	23	Kota	2000.00
2	Khilan	25	Delhi	1500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
1	Ramesh	32	Ahmedabad	2000.00
C R +emeee tommmeeemeee tommmeeeee +

Following is an example, which would sort the result in descending order by NAME:

SQL> SELECT * FROM CUSTOMERS
ORDER BY NAME DESC

This would produce the following result:

R C Fomeee e oo +
| ID | NAME | AGE| ADDRESS | SALARY |
R C Fomeee e oo +
1	Ramesh	32	Ahmedabad	2000.00
7	Muffy	24	Indore	10000.00
6	Komal	22	MP	4500.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
5	Hardik	27	Bhopal	8500.00
4	Chaitai	25	Mumbai	6500.00
S B rommeemees frmmeoees +

To fetch the rows with own preferred order, the SELECT query would be as follows:

SQL> SELECT * FROM CUSTOMERS
ORDER BY (CASE ADDRESS
WHENDELHI' THEN 1
WHEN'BHOPAL' THEN 2
WHEN'KOTA' THEN 3
WHEN'AHMADABAD' THEN 4
WHEN'MP" THEN 5
ELSE 100 END ASC ADDRESS DESC

This would produce the following result:

= B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
= B e e +
2	Khilan	25	Delhi	1500.00
5	Hardik	27	Bhopal	8500.00
3	kaushik	23	Kota	2000.00
6	Komal	22	MP	4500.00
4	Chaitali	25	Mumbai	6500.00
7	Muffy	24	Indore	10000.00
1	Ramesh	32	Ahmedabad	2000.00
S SRR SR S — Fomnmemeee- S R +

This will sort customers by ADDRESS in your ownoOrder of preference first and in a natural order for the
remaining addresses. Also remaining Addresses will be sorted in the reverse alpha order.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Constraints

nstraints are the rules enforced on data columns on table. These are used to limit the type of data that

can go into a table. This ensures the accuracy and reliability of the data in the database.

Contraints could be column level or table level. Column level constraints are applied only to one column where as
table level constraints are applied to the whole table.

Following are commonly used constraints available in SQL. These constraints have already been discussed
in SOL - RDBMS Concepts chapter but its worth to revise them at this point.

Following are commonly used constraints available in SQL:

NOT NULL Constraint: Ensures that a column cannot have NULL value.

DEFAULT Constraint: Provides a default value for a column when none is specified.

UNIQUE Constraint: Ensures that all values in a column are different.

PRIMARY Key: Uniquely identified each rows/records in a database table.

FOREIGN Key: Uniquely identified a row/record in any other database table.

CHECK Constraint: The CHECK constraint ensures that all values in a column satisfy certain conditions.
INDEX: Use to create and retrieve data from the database very quickly.

NOT NULL Constraint:

By default, a column can hold NULL values. If you do not want a column to have a NULL value, then you need to
define such constraint on this column specifying that NULL is now not allowed for that column.

= =4 -8 _a_a_9a_29

A NULL is not the same as no data, rather, it represents unknown data.
Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns, three of which,
ID and NAME and AGE, specify not to accept NULLSs:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sql/sql-rdbms-concepts.htm

ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)
);

If CUSTOMERS table has already been created, then to add a NOT NULL constraint to SALARY column in Oracle
and MySQL, you would write a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) NOT NULL;

DEFAULT Constraint

The DEFAULT constraint provides a default value to a column when the INSERT INTO statement does not provide
a specific value.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, SALARY
column is set to 5000.00 by default, so in case INSERT INTO statement does not provide a value for this column,
then by default this column would be set to 5000.00.

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2) DEFAULT 5000.00,

PRIMARY KEY (ID)
);

If CUSTOMERS table has already been created, then to add a DFAULT constraint to SALARY column, you would
write a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18, 2) DEFAULT 5000.00;

Drop Default Constraint:

To drop a DEFAULT constraint, use the following SQL:

ALTER TABLE CUSTOMERS

ALTER COLUMN SALARY DROP DEFAULT;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

UNIQUE Constraint:

The UNIQUE Constraint prevents two records from having identical values in a particular column. In the
CUSTOMERS table, for example, you might want to prevent two or more people from having identical age.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, AGE
column is set to UNIQUE, so that you can not have two records with same age:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL UNIQUE,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)
);

If CUSTOMERS table has already been created, then to add a UNIQUE constraint to AGE column, you would write
a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL UNIQUE;

You can also use the following syntax, which supports naming the constraint in multiple columns as well:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT myUniqueConstraint UNIQUE(AGE, SALARY);

DROP a UNIQUE Constraint:

To drop a UNIQUE constraint, use the following SQL:

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myUniqueConstraint;

If you are using MySQL, then you can use the following syntax:

ALTER TABLE CUSTOMERS

DROP INDEX myUniqueConstraint;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

PRIMARY Key:

A primary key is a field in a table which uniquely identifies each row/record in a database table. Primary keys must
contain unique values. A primary key column cannot have NULL values.

A table can have only one primary key, which may consist of single or multiple fields. When multiple fields are used
as a primary key, they are called a composite key .

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

Note: You would use these concepts while creating database tables.
Create Primary Key:

Here is the syntax to define ID attribute as a primary key in a CUSTOMERS table.

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)
);

To create a PRIMARY KEY constraint on the "ID" column when CUSTOMERS table already exists, use the
following SQL syntax:

ALTER TABLE CUSTOMER ADD PRIMARY KEY (ID);

NOTE: If you use the ALTER TABLE statement to add a primary key, the primary key column(s) must already have
been declared to not contain NULL values (when the table was first created).

For defining a PRIMARY KEY constraint on multiple columns, use the following SQL syntax:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID, NAME)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

To create a PRIMARY KEY constraint on the "ID" and "NAMES" columns when CUSTOMERS table already exists,
use the following SQL syntax:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT PK_CUSTID PRIMARY KEY (ID, NAME);

Delete Primary Key:

You can clear the primary key constraints from the table, Use Syntax:

ALTER TABLE CUSTOMERS DROP PRIMARY KEY ;

FOREIGN Key:

A foreign key is a key used to link two tables together. This is sometimes called a referencing key.

Primary key field from one table and insert it into the other table where it becomes a foreign key i.e., Foreign Key is
a column or a combination of columns, whose values match a Primary Key in a different table.

The relationship between 2 tables matches the Primary Key in one of the tables with a Foreign Key in the
second table.

If a table has a primary key defined on any field(s), then you can not have two records having the same value of
that field(s).

Example:

Consider the structure of the two tables as follows:

CUSTOMERS table:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAMEVARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

ORDERS table:

CREATE TABLE ORDERS (
ID INT NOT NULL,
DATE DATETIME,

CUSTOMER_ID INT references CUSTOMERS(ID),

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

AMOUNT double,

PRIMARY KEY (ID)
);

If ORDERS table has already been created, and the foreign key has not yet been, use the syntax for specifying a
foreign key by altering a table.

ALTER TABLE ORDERS

ADD FOREIGN KEY (Customer_ID) REFERENCES CUSTOMERS (ID);

DROP a FOREIGN KEY Constraint:
To drop a FOREIGN KEY constraint, use the following SQL:
ALTER TABLE ORDERS

DROP FOREIGN KEY;

CHECK Constraint:

The CHECK Constraint enables a condition to check the value being entered into a record. If the condition
evaluates to false, the record violates the constraint and isn@ entered into the table.

Example:

For example, the following SQL creates a new table called CUSTOMERS and adds five columns. Here, we add a
CHECK with AGE column, so that you can not have any CUSTOMER below 18 years:

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL CHECK (AGE >= 18),
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)
);

If CUSTOMERS table has already been created, then to add a CHECK constraint to AGE column, you would write
a statement similar to the following:

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL CHECK (AGE >= 18);

You can also use following syntax, which supports naming the constraint and multiple columns as well:

ALTER TABLE CUSTOMERS

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

ADD CONSTRAINT myCheckConstraint CHECK(AG E >= 18);

DROP a CHECK Constraint:

To drop a CHECK constraint, use the following SQL. This syntax does not work with MySQL:

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myCheckConstraint;

INDEX:

The INDEX is used to create and retrieve data from the database very quickly. Index can be created by using
single or group of columns in a table. When index is created, it is assigned a ROWID for each row before it sorts
out the data.

Proper indexes are good for performance in large databases, but you need to be careful while creating index.
Selection of fields depends on what you are using in your SQL queries.

Example:
For example, the following SQL creates a new table called CUSTOMERS and adds five columns:
CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

)i
Now, you can create index on single or multiple columns using the followwng syntax:

CREATE INDEX index_name

ON table_name (columnl, column2.....);

To create an INDEX on AGE column, to optimize the search on customers for a particular age, following is the SQL
syntax:

CREATE INDEX idx_age

ON CUSTOMERS (AGE);

DROP INDEX Constraint:

To drop an INDEX constraint, use the following SQL:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

ALTER TABLE CUSTOMERS

DROP INDEX idx_age;

Constraints can be specified when a table is created with the CREATE TABLE statement or you can use ALTER
TABLE statment to create constraints even after the table is created.

Dropping Constraints:

Any constraint that you have defined can be dropped using the ALTER TABLE command with the DROP
CONSTRAINT option.

For example, to drop the primary key constraint in the EMPLOYEES table, you can use the following command:
ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK

Some implementations may provide shortcuts for dropping certain constraints. For example, to drop the primary
key constraint for a table in Oracle, you can use the following command:

ALTER TABLE EMPLOYEES DROP PRIMARY KEY

Some implementations allow you to disable constraints. Instead of permanently dropping a constraint from the
database, you may want to temporarily disable the constraint, and then enable it later.

Integrity Constraints:

Integrity constraints are used to ensure accuracy and consistency of data in a relational database. Data integrity is
handled in a relational database through the concept of referential integrity.

There are many types of integrity constraints that play a role in referential integrity (RI). These constraints include
Primary Key, Foreign Key, Unique Constraints and other constraints mentioned above.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Joins

he SQL Joins clause is used to combine records from two or more tables in a database. A JOIN is a

means for combining fields from two tables by using values common to each.

Consider the following two tables, (a) CUSTOMERS table is as follows:

E SRR e +ommee - oo +
| ID | NAME | AGE| ADDRESS | SALARY |
B T B — + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
dhomes dhommmmemees CESSE s b +

R — | S — | — | +
|OID | DATE | CUSTOMER_ID| AMOUNT|
R — | S — | — | +
102	2009-10-08 00:00: 00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
R — | S — | — | +

Now, let us join these two tables in our SELECT statement as follows:
SQL> SELECTID, NAME AGE AMOUNT

FROM CUSTOMERSORDERS
WHERE CUSTOMER® = ORDERSCUSTOMER_ID

This would produce the following result:

T e — E— S — +
| ID | NAME | AGE| AMOUNT|
O E— N — +
3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

| 4| Chaitali | 25| 2060 |
SR N B— S +

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be used to join tables,
such as =, <, >, <>, <=, >=, I=, BETWEEN, LIKE, and NOT; they can all be used to join tables. However, the most
common operator is the equal symbol.

SQL Join Types:

There are different types of joins available in SQL:

INNER JOIN: returns rows when there is a match in both tables.

LEFT JOIN: returns all rows from the left table, even if there are no matches in the right table.
RIGHT JOIN: returns all rows from the right table, even if there are no matches in the left table.
FULL JOIN: returns rows when there is a match in one of the tables.

SELF JOIN: is used to join a table to itself as if the table were two tables, temporarily renaming at least one
table in the SQL statement.

CARTESIAN JOIN: returns the Cartesian product of the sets of records from the two or more joined tables.

INNER JOIN

The most frequently used and important of the joins is the INNER JOIN. They are also referred to as an
EQUIJOIN.

= = =4 -8 -8 9

The INNER JOIN creates a new result table by combining column values of two tables (tablel and table2) based
upon the join-predicate. The query compares each row of tablel with each row of table2 to find all pairs of rows
which satisfy the join-predicate. When the join-predicate is satisfied, column values for each matched pair of rows
of A and B are combined into a result row.

Syntax:
The basic syntax of INNER JOIN is as follows:

SELECT tablel . columnl , table2 .column2 ...

FROM tablel

INNER JOIN table2

ON tablel .common_filed = table2 .common_field ;
Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:
Jhomes o CISSSSS e e +

| ID | NAME | AGE| ADDRESS | SALARY |

Jhomes o CISSSSS e e +

| 1| Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3| kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

S B froomoeomees C +

(b) Another table is ORDERS as follows:

E A mmmmmmmmmmsssceemas B e +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

| OID | DATE | ID | AMOUNT]|

4bemmes A bemmemsee s s S S — +
102	2009-10-08 00:00: 00
100	2009-10-08 00:00: 00
101	2009-11-20 00:00:00
103	2008-05-20 00:00:00

AN WW

I I
I I
| 1560 |
I I

Now, let us join these two tables using INNER JOIN as follows:

SQL> SELECT ID , NAME AMOUNT DATE
FROM CUSTOMERS
INNER JOIN ORDERS
ON CUSTOMERSD = ORDERSCUSTOMER_ID

This would produce the following result:

o+
| ID | NAME

+
AMOUNT| DATE |
+

kaushik
kaushik
Khilan

Chaitali

3000 | 2009-10-08 00:00: 00 |
1500 | 2009-10-08 00: 00: 00 |
1560 | 2009-11-20 00:00:00 |
2060 | 2008-05-20 00:00:00 |
T +

S

LEFT JOIN

The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in the right table. This means
that if the ON clause matches 0 (zero) records in right table, the join will still return a row in the result, but with
NULL in each column from right table.

This means that a left join returns all the values from the left table, plus matched values from the right table or
NULL in case of no matching join predicate.

Syntax:

The basic syntax of LEFT JOIN is as follows:

SELECT tablel . columnl , table2 . column2 ...
FROM tablel

LEFT JOIN table2

ON tablel .common_filed = table2 .common_field

Here given condition could be any given expression based on your requirement.

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

TS E e e +
| ID | NAME | AGE| ADDRESS | SALARY |
TS E e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

| Komal | 22 | MP | 4500.00 |
| Muffy | 24 | Indore | 10000.00 |

102	2009-10-08 00:00: 00
100	2009-10-08 00:00: 00
101	2009-11-20 00:00:00
103	2008-05-20 00:00:00

Now, let us join these two tables using LEFT JOIN as follows:

SQL> SELECT ID , NAME AMOUNT DATE
FROM CUSTOMERS
LEFT JOIN ORDERS
ON CUSTOMERSD = ORDERSCUSTOMER_ID

This would produce the following result:

+- 4

| ID |
+- 4

+
NAME | AMOUNT DATE
+

+— +

Ramesh
Khilan

| | NULL | NULL
| | | 2009-11-20 00: 00: 00
| kaushik | | 2009-10- 08 00:00: 00
| kaushik | 1500 | 2009-10-08 00:00: 00
| Chaitali | 2060 | 2008-05-20 00:00: 00
| Hardik | NULL | NULL
| Komal | NULL | NULL
| Muffy | NULL | NULL
o+ + | +

RIGHT JOIN

The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches in the left table. This
means that if the ON clause matches 0 (zero) records in left table, the join will still return a row in the result, but
with NULL in each column from left table.

~NOoO PR, WWN -

This means that a right join returns all the values from the right table, plus matched values from the left table or
NULL in case of no matching join predicate.

Syntax:

The basic syntax of RIGHT JOIN is as follows:
SELECT tablel . columnl , table2 . column2 ...
FROM tablel

RIGHT JOIN table2
ON tablel .common_filed = table2 .common_field ;

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

B B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B B e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
C R +emeee tommmeeemeee tommmeeeee +

S — A oo e +
|OID | DATE | CUSTOMER_ID| AMOUNT|
S — | frocmmeemmeenes oo +
102	2009-10-08 00:00: 00	3	3000
100	2009-10-08 00:00: 00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
S — | frocmmeemmeenes oo +

Now, let us join these two tables using RIGHT JOIN as follows:

SQL> SELECT ID , NAME AMOUNT DATE
FROM CUSTOMERS
RIGHT JOIN ORDERS
ON CUSTOMERSD = ORDERSCUSTOMER_ID

This would produce the following result:

[| + + +
| ID | NAME | AMOUNT| DATE |
[| + + +
3	kaushik	3000	2009-10-08 00:00:00
3	kaushik	1500	2009-10-08 00:00: 00
2	Khilan	1560	2009-11-20 00:00:00
4	Chaitali	2060	2008-05-20 00:00:00
[| + + +

FULL JOIN

The SQL FULL JOIN combines the results of both left and right outer joins.

The joined table will contain all records from both tables, and fill in NULLs for missing matches on either side.

Syntax:

The basic syntax of FULL JOIN is as follows:

SELECT tablel . columnl , table2 . column2 ...
FROM tablel

FULL JOIN table2

ON tablel .common_filed = table2 .common_field

Here given condition could be any given expression based on your requirement.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

C R +emeee tommmeeemeee tommmeeeee +

| ID | NAME | AGE| ADDRESS | SALARY |

C R +emeee tommmeeemeee tommmeeeee +

| 1| Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3| kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6| Komal | 22| MP | 4500.00 |

| 7| Muffy | 24 | Indore | 10000.00 |

B B e e +

(b) Another table is ORDERS as follows:

B e e e fremmee +
| OID | DATE | CUSTOMER_ID| AMOUNT]|
B e e e fremmee +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00: 00: 00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00: 00	4	2060
B e e e fremmee +

Now, let us join these two tables using FULL JOIN as follows:

SQL> SELECT ID , NAME AMOUNT DATE
FROM CUSTOMERS
FULL JOIN ORDERS
ON CUSTOMERSD = ORDERSCUSTOMER_ID

This would produce the following result:

o fberomemmme + + +
| ID | NAME | AMOUNT] DATE |
o fberomemmme + + +
| 1 | Ramesh | NULL | NULL [
2	Khilan	1560	2009-11-20 00:00: 00
3	kaushik	3000	2009-10-08 00: 00: 00
3	kaushik	1500	2009-10-08 00:00: 00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
3	kaushik	3000	2009-10-08 00:00: 00
3	kaushik	1500	2009-10-08 00:00: 00
2	Khilan	1560	2009-11-20 00:00: 00
4	Chaitali	2060	2008-05-20 00:00:00
S remmmemmm— + + +

If your Database does not support FULL JOIN like MySQL does not support FULL JOIN, then you can use UNION
ALL clause to combine two JOINS as follows:

SQL> SELECT ID , NAME AMOUNT DATE
FROM CUSTOMERS
LEFT JOIN ORDERS

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

ON CUSTOMERSD = ORDERSCUSTOMER_ID
UNION ALL

SELECT ID , NAME AMOUNT DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERSD = ORDERSCUSTOMER_ID

SELF JOIN

The SQL SELF JOIN is used to join a table to itself as if the table were two tables, temporarily renaming at least
one table in the SQL statement.

Syntax:
The basic syntax of SELF JOIN is as follows:

SELECT a. column_name , b. column_name ...
FROM tablela , tablelb
WHERE a common_filed = b. common_field

Here, WHERE clause could be any given expression based on your requirement.

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

R C Fomeee e oo +
| ID | NAME | AGE| ADDRESS | SALARY |
R C Fomeee e oo +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Jhomes o CISSSSS e e +

Now, let us join this table using SELF JOIN as follows:
SQL> SELECT a .ID, b. NAME a. SALARY

FROM CUSTOMERS,a CUSTOMERS b
WHERE a SALARY < b. SALARY

This would produce the following result:

+--- 4 ¥ +
| ID | NAME | SALARY |
+--- + I +
2	Ramesh	1500.00
2	kaushik	1500.00
1	Chaitali	2000.00
2	Chaitali	1500.00
3	Chaitali	2000.00
6	Chaitali	4500.00
1	Hardik	2000.00
2	Hardik	1500.00
3	Hardik	2000.00
4	Hardik	6500.00

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

6	Hardik	4500.00
1	Komal	2000.00
2	Komal	1500.00
3	Komal	2000.00
[1	Muffy	2000.00
2	Muffy	1500.00
3	Muffy	2000.00
4	Muffy	6500.00
5	Muffy	8500.00
6	Muffy	4500.00
+o-- 4 + +

CARTESIAN JOIN

The CARTESIAN JOIN or CROSS JOIN returns the cartesian product of the sets of records from the two or more
joined tables. Thus, it equates to an inner join where the join-condition always evaluates to True or where the join-
condition is absent from the statement.

Syntax:
The basic syntax of INNER JOIN is as follows:

SELECT tablel . columnl , table2 . column2 ...
FROM tablel , table2 [, table3 |

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:
R C Fomeee e oo +

| ID | NAME | AGE| ADDRESS | SALARY |

Jhomes o CISSSSS e e +

| 1| Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3| kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

Jhomes o CISSSSS e e +

(b) Another table is ORDERS as follows:

CHSSSSS oo e CISSEERS +
| OID | DATE | CUSTOMER_ID| AMOUNT]
CHSSSSS oo e CISSEERS +
102	2009-10-08 00:00: 00	3	3000
100	2009-10-08 00:00: 00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00: 00	4	2060
E A mmmmmmmmmmsssceemas B e +

Now, let us join these two tables using INNER JOIN as follows:

SQL> SELECT ID , NAME AMOUNT DATE
FROM CUSTOMERSORDERS

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

This would produce the following result:

Fomee

| ID
SIS

N~N~NNOOOOOUITUUIOARARBRBRRWWWWNNNNREREPR

Foeee

+ + +
| NAME | AMOUNT| DATE

+ + +

| Ramesh | 3000 | 2009-10-08
| Ramesh | 1500 | 2009-10-08
| Ramesh | 1560 | 2009-11- 20
| Ramesh | 2060 | 2008- 05- 20
| Khilan | 3000 | 2009-10-08
| Khilan | 1500 | 2009-10-08
| Khilan | 1560 | 2009-11- 20
| Khilan | 2060 | 2008- 05- 20
| kaushik | 3000 | 2009-10-08
| kaushik | 1500 | 2009-10-08
| kaushik | 1560 | 2009-11- 20
| kaushik | 2060 | 2008- 05- 20
| Chaitali | 3000 | 2009-10- 08
| Chaitali | 1500 | 2009-10-08
| Chaitali | 1560 | 2009-11-20
| Chaitali | 2060 | 2008- 05- 20
| Hardik | 3000 | 2009-10- 08
| Hardik | 1500 | 2009-10-08
| Hardik | 1560 | 2009-11-20
| Hardik | 2060 | 2008- 05- 20
| Komal | 3000 | 2009-10- 08
| Komal | 1500 | 2009-10-08
| Komal | 1560 | 2009-11-20
| Komal | 2060 | 2008- 05- 20
| Muffy | 3000 | 2009-10- 08
| Muffy | 1500 | 2009-10-08
| Muffy | 1560 | 2009-11-20
| Muffy | 2060 | 2008- 05- 20
+ + +

+— +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Unions Clause

he SQL UNION clause/operator is used to combine the results of two or more SELECT statements

without returning any duplicate rows.

To use UNION, each SELECT must have the same number of columns selected, the same number of column
expressions, the same data type, and have them in the same order, but they do not have to be the same length.

The basic syntax of UNION is as follows:
SELECT columnl [, column2 |
FROMtablel [, table2 |
[WHERE condition |
UNION
SELECT columnl [, column2 |

FROMtablel [, table2 |
[WHERE condition |

Here given condition could be any given expression based on your requirement.

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

dhomes dhommmmemees CESSE s b +
| ID | NAME | AGE| ADDRESS | SALARY |
dhomes dhommmmemees CESSE s b +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
E RERE SRR E R + + +

(b) Another table is ORDERS as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

|OID | DATE | CUSTOMER_ID| AMOUNT]|
N B— - oo S +
102	2009-10-08 00:00: 00	3	3000
100	2009-10-08 00:00: 00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
N B— - oo S +

Now, let us join these two tables in our SELECT statement as follows:

SQL> SELECT ID , NAME AMOUNT DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERSD = ORDERSCUSTOMER_ID
UNION

SELECT ID , NAME AMOUNT DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERSD = ORDERSCUSTOMER_ID

This would produce the following result:

T dheccrmeeres + + +
| ID | NAME | AMOUNT DATE |
T dheccrmeeres + + +
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00:00:00
3	kaushik	3000	2009-10-08 00:00: 00
3	kaushik	1500	2009-10-08 00:00: 00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL
7	Muffy	NULL	NULL
e o + + +

The UNION ALL Clause:

The UNION ALL operator is used to combine the results of two SELECT statements including duplicate rows.

The same rules that apply to UNION apply to the UNION ALL operator.

Syntax:

The basic syntax of UNION ALL is as follows:
SELECT columnl [, column2 |
FROM tablel [, table2]
[WHERE condition |
UNION ALL
SELECT columnl [, column2 |

FROM tablel [, table2]
[WHERE condition]

Here given condition could be any given expression based on your requirement.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

C R +emeee tommmeeemeee tommmeeeee +
| ID | NAME | AGE| ADDRESS | SALARY |
C R +emeee tommmeeemeee tommmeeeee +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
B B e e +

(b) Another table is ORDERS as follows:
B e e e fremmee +
| OID | DATE | CUSTOMER_ID| AMOUNT]|
B e e e fremmee +
102	2009-10-08 00:00:00	3	3000
100	2009-10-08 00: 00: 00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00: 00	4	2060

Now, let us join these two tables in our SELECT statement as follows:

SQL> SELECT ID , NAME AMOUNT DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERSD = ORDERSCUSTOMER_ID
UNION ALL

SELECT ID , NAME AMOUNT DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERSD = ORDERSCUSTOMER_ID

This would produce the following result:

ISSSSSS b + + +
| ID | NAME | AMOUNT| DATE |
ISSSSSS b + + +
1	Ramesh	NULL	NULL
2	Khilan	1560	2009-11-20 00: 00: 00
3	kaushik	3000	2009-10-08 00:00: 00
3	kaushik	1500	2009-10-08 00: 00: 00
4	Chaitali	2060	2008-05-20 00:00:00
5	Hardik	NULL	NULL
6	Komal	NULL	NULL [
7	Muffy	NULL	NULL
3	kaushik	3000	2009-10-08 00:00: 00
3	kaushik	1500	2009-10-08 00: 00: 00
2	Khilan	1560	2009-11-20 00:00: 00
4	Chaitali	2060	2008-05-20 00:00:00
+

There are two other clauses (i.e., operators), which are very similar to UNION clause:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

T SQL INTERSECT Clause: is used to combine two SELECT statements, but returns rows only from the first
SELECT statement that are identical to a row in the second SELECT statement.

q SQL EXCEPT Clause : combines two SELECT statements and returns rows from the first SELECT statement
that are not returned by the second SELECT statement.

INTERSECT Clause

The SQL INTERSECT clause/operator is used to combine two SELECT statements, but returns rows only from the
first SELECT statement that are identical to a row in the second SELECT statement. This means INTERSECT
returns only common rows returned by the two SELECT statements.

Just as with the UNION operator, the same rules apply when using the INTERSECT operator. MySQL does not
support INTERSECT operator

Syntax:
The basic syntax of INTERSECT is as follows:
SELECT columnl [, column2 |
FROM tablel [, table2]
[WHERE condition]
INTERSECT
SELECT columnl [, column2 |

FROM tablel [, table2]
[WHERE condition]

Here given condition could be any given expression based on your requirement.

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

= B e e +

| ID | NAME | AGE| ADDRESS | SALARY |
= B e e +

| 1| Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3| kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5| Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7| Muffy | 24 | Indore | 10000.00 |
= B e e +

(b) Another table is ORDERS as follows:

R dromememeee e drmmmmsoenes froomoees +
|OID | DATE | CUSTOMER_ID| AMOUNT]
R dromememeee e drmmmmsoenes froomoees +
102	2009-10-08 00:00: 00	3	3000
100	2009-10-08 00:00:00	3	1500
101	2009-11-20 00:00: 00	2	1560
103	2008-05-20 00:00:00	4	2060
R dromememeee e drmmmmsoenes froomoees +

Now, let us join these two tables in our SELECT statement as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sql/sql-intersect-clause.htm
http://www.tutorialspoint.com/sql/sql-except-clause.htm

SQL> SELECT ID , NAME AMOUNT DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERSD = ORDERSCUSTOMER_ID
INTERSECT

SELECT ID , NAME AMOUNT DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERSD = ORDERSCUSTOMER_ID

This would produce the following result:

dpmeme 4 + + +
| ID | NAME | AMOUNT| DATE |
dpmeme 4 + + +
3	kaushik	3000	2009-10-08 00: 00: 00
3	kaushik	1500	2009-10-08 00: 00: 00
2	Ramesh	1560	2009-11-20 00: 00: 00
4	kaushik	2060	2008-05-20 00:00:00
Jbemsens dremmemmene + + +

EXCEPT Clause

The SQL EXCEPT clause/operator is used to combine two SELECT statements and returns rows from the first
SELECT statement that are not returned by the second SELECT statement. This means EXCEPT returns only
rows, which are not available in second SELECT statement.

Just as with the UNION operator, the same rules apply when using the EXCEPT operator. MySQL does not
support EXCEPT operator.

Syntax:

The basic syntax of EXCEPT is as follows:

SELECT columnl [, column2]
FROM tablel [, table2]

[WHERE condition]
EXCEPT

SELECT columnl [, column2]
FROM tablel [, table2]

[WHERE condition]

Here given condition could be any given expression based on your requirement.
Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

e e — S — B dbomommmmees +
|ID|NAME | AGE | ADDRESS | SALARY |
e e — S — B dbomommmmees +
| 1| Ramesh | 32| Ahmedabad | 2000.00 |

| 2|Khilan | 25| Delhi | 1500.00 |

| 3|kaushik | 23 | Kota | 2000.00 |

| 4] Chaitali| 25| Mumbai | 6500.00 |

| 5| Har dik | 27 | Bhopal | 8500.00 |

| 6] Komal | 22|MP | 4500.00 |

| 7| Muffy | 24 |Indore |10000.00 |

| R | R
|OID | DATE | CUSTOMER_ID | AMOUNT |

| R L NN |
| 1022009 - 10- 08 00:00:00 | 3| 3000 |

| 100 | 2009 - 10- 08 00:00:00 | 3| 1500 |

| 1012009 - 11-20 00:00:00 | 2| 1560 |
| 103|2008 - 05- 20 00:00:00 | 4| 2060 |

S — | | fhomermees

Now, let us join these two tables in our SELECT statement as follows:
SQL> SELECT ID, NAME, AMOUNT, DATE
FROM CUSTOMERS
LEFT JOIN ORDERS
ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID
EXCEPT
SELECT ID, NAME, AMOUNT, DATE
FROM CUSTOMERS
RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

R M — Ej -+

|ID|NAME | AMOUNT | DATE

+o- o+ + +

| 1| Ramesh | NULL | NULL
| 5|Hardik | NULL | NULL

| 6| Komal | NULL | NULL
| 7| Muffy | NULL|NULL

- 4+ + +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL NULL Values

he SQL NULL is the term used to represent a missing value. A NULL value in a table is a value in a field

that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that a NULL value is different
than a zero value or a field that contains spaces.

Syntax:
The basic syntax of NULL while creating a table:

SQL> CREATE TABLE CUSTOMERS

ID INT NOT NULL ,
NAME VARCHAR 20) NOT NULL,
AGE INT NOT NULL ,

ADDRESS CHAR(25) |,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID)

);

Here, NOT NULL signifies that column should always accept an explicit value of the given data type. There are
two columns where we did not use NOT NULL, which means these columns could be NULL.

A field with a NULL value is one that has been left blank during record creation.

Example:

The NULL value can cause problems when selecting data, however, because when comparing an unknown value
to any other value, the result is always unknown and not included in the final results.

You must use the IS NULL or IS NOT NULL operators in order to check for a NULL value.
Consider the following table, CUSTOMERS having the following records:

B T [— e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B T [— e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	
7	Muffy	24	Indore	
B B e e +

Now, following is the usage of IS NOT NULL operator:

SQL> SELECT ID , NAME AGE ADDRESS SALARY
FROM CUSTOMERS
WHERE SALARY IS NOT NULL,;

This would produce the following result:

C R +emeee tommmeeemeee tommmeeeee +
| ID | NAME | AGE| ADDRESS | SALARY |
R C Fomeee e oo +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
S B rommeemees frmmeoees +				
Now, following is the usage of IS NULL operator:				
SQL> SELECT ID , NAME AGE ADDRESS SALARY				
FROM CUSTOMERS				
WHERE SALARY IS NULL;				
This would produce the following result:				
Jhomes o CISSSSS e e +				
ID	NAME	AGE	ADDRESS	SALARY
Jhomes o CISSSSS e e +				
6	Komal	22	MP	
7	Muffy	24	Indore	[
Jhomes o CISSSSS e e +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Alias Syntax

ou can rename a table or a column temporarily by giving another name known as alias.

The use of table aliases means to rename a table in a particular SQL statement. The renaming is a temporary
change and the actual table name does not change in the database.

The column aliases are used to rename a table's columns for the purpose of a particular SQL query.
The basic syntax of table alias is as follows:

SELECT columnl , column2
FROM table_name AS alias_name
WHERE condition |;

The basic syntax of column alias is as follows:

SELECT column_name AS alias_name
FROM table_name
WHERE condition |;

Example:

Consider the following two tables, (a) CUSTOMERS table is as follows:

[T [— + + +
| ID | NAME | AGE| ADDRESS | SALARY |
[T [— + + +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
B T [— Ao Ammmmmm—ee +

(b) Another table is ORDERS as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

|OID | DATE | CUSTOMER_ID| AMOUNT|
N B— - oo S +
102	2009-10-08 00:00: 00	3	3000
100	2009-10-08 00:00: 00	3	1500
101	2009-11-20 00:00:00	2	1560
103	2008-05-20 00:00:00	4	2060
N B— - oo S +

Now, following is the usage of table alias :
SQL> SELECTC. ID, C NAME C AGE O AMOUNT

FROM CUSTOMERS AS C ORDERS AS O
WHERE C ID = O CUSTOMER_ID

This would produce the following result:

foero dhooooeoeo S — oo +
| ID | NAME | AGE| AMOUNT
foero dhooooeoeo S — oo +
3	kaushik	23	3000
3	kaushik	23	1500
2	Khilan	25	1560
4	Chaitali	25	2060
foero dhooooeoeo S — oo +

Following is the usage of column alias :

SQL> SELECT ID AS CUSTOMER_ID , NAME AS CUSTOMER_NAME
FROM CUSTOMERS
WHERE SALARY IS NOT NULL,;

This would produce the following result:
| CUSTOMER_ID] CUSTOMER_NAME
+

I I
| Khilan |
| kaushik |
| Chaitali |
| Hardik |
| Komal |
I I

Muffy

3 bemsemsemsmmss 3 bemsemsemsemsess +

~NOoOgabhWwWN PR

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Indexes

ndexes are special lookup tables that the database search engine can use to speed up data retrieval. Simply

put, an index is a pointer to data in a table. An index in a database is very similar to an index in the back of a book.

For example, if you want to reference all pages in a book that discuss a certain topic, you first refer to the index,
which lists all topics alphabetically and are then referred to one or more specific page numbers.

An index helps speed up SELECT queries and WHERE clauses, but it slows down data input, with UPDATE and
INSERT statements. Indexes can be created or dropped with no effect on the data.

Creating an index involves the CREATE INDEX statement, which allows you to name the index, to specify the
table and which column or columns to index, and to indicate whether the index is in ascending or descending
order.

Indexes can also be unique, similar to the UNIQUE constraint, in that the index prevents duplicate entries in the
column or combination of columns on which there's an index.

The CREATE INDEX Command:

The basic syntax of CREATE INDEX is as follows:

CREATE INDEX index_name ON table_name ;

SingleColumnindexes:

A single-column index is one that is created based on only one table column. The basic syntax is as follows:

CREATE INDEX index_name
ON table_name (column_name);

Unique Indexes:

Unique indexes are used not only for performance, but also for data integrity. A unique index does not allow any
duplicate values to be inserted into the table. The basic syntax is as follows:

CREATE INDEX index_name
on table_name (column_name);

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Composite Indexes:

A composite index is an index on two or more columns of a table. The basic syntax is as follows:

CREATE INDEX index_name
on table_name (columnl , column2);

Whether to create a single-column index or a composite index, take into consideration the column(s) that you may
use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should there be two or more
columns that are frequently used in the WHERE clause as filters, the composite index would be the best choice.

Implicit Indexes:

Implicit indexes are indexes that are automatically created by the database server when an object is created.
Indexes are automatically created for primary key constraints and unique constraints.

The DROP INDEX Command:

An index can be dropped using SQL DROP command. Care should be taken when dropping an index because
performance may be slowed or improved.

The basic syntax is as follows:
DROP INDEX index_name ;

You can check INDEX Constraint chapter to see actual examples on Indexes.

When should indexes be avoided?

Although indexes are intended to enhance a database's performance, there are times when they should be
avoided. The following guidelines indicate when the use of an index should be reconsidered:

{ Indexes should not be used on small tables.
9 Tables that have frequent, large batch update or insert operations.
9 Indexes should not be used on columns that contain a high number of NULL values.

f Columns that are frequently manipulated should not be indexed.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sql/sql-index.htm

SQL ALTER TABLE Command

he SQL ALTER TABLE command is used to add, delete or modify columns in an existing table.

You would also use ALTER TABLE command to add and drop various constraints on an existing table.

Syntax:

The basic syntax of ALTER TABLE to add a new column in an existing table is as follows:
ALTER TABLE table_name ADD column_name datatype ;

The basic syntax of ALTER TABLE to DROP COLUMN in an existing table is as follows:
ALTER TABLE table_name DROP COLUMN column_name ;

The basic syntax of ALTER TABLE to change the DATA TYPE of a column in a table is as follows:
ALTER TABLE table_name MODIFY COLUMN column_name datatype ;

The basic syntax of ALTER TABLE to add a NOT NULL constraint to a column in a table is as follows:
ALTER TABLE table_name MODIFY column_name datatype NOT NULL ;

The basic syntax of ALTER TABLE to ADD UNIQUE CONSTRAINT to a table is as follows:

ALTER TABLE table_name
ADD CONSTRAINT MyUniqueConstraint UNIQUE columnl , column2 ..);

The basic syntax of ALTER TABLE to ADD CHECK CONSTRAINT to a table is as follows:

ALTER TABLE table_name
ADD CONSTRAINT MyUniqueConstraint CHECK (CONDITION);

The basic syntax of ALTER TABLE to ADD PRIMARY KEY constraint to a table is as follows:

ALTER TABLE table_name
ADD CONSTRAINTMyPrimaryKey PRIMARY KEY (columnl , column2 ..);

The basic syntax of ALTER TABLE to DROP CONSTRAINT from a table is as follows:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

ALTER TABLE table_name
DROP CONSTRAINTMyUniqueConstraint ;

If you're using MySQL, the code is as follows:

ALTER TABLE table_name
DROP INDEX MyUniqueConstraint

The basic syntax of ALTER TABLE to DROP PRIMARY KEY constraint from a table is as follows:

ALTER TABLE table_name
DROP CONSTRAINTMyPrimaryKey :

If you're using MySQL, the code is as follows:

ALTER TABLE table_name
DROP PRIMARY KEY

Example:

Consider the CUSTOMERS table having the following records:
S B rommeemees frmmeoees +
| ID | NAME | AGE| ADDRESS | SALARY |
S B rommeemees frmmeoees +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Jhomes o CISSSSS e e +

Following is the example to ADD a new column in an existing table:

ALTER TABLE CUSTOMERS ADD SEXchar (1);

Now, CUSTOMERS table is changed and following would be output from SELECT statement:

T [— + + free +
| ID | NAME | AGE| ADDRESS | SALARY | SEX |
T [— + + free +
1	Ramesh	32	Ahmedabad	2000.00	NULL
2	Ramesh	25	Delhi	1500.00	NULL
3	kaushik	23	Kota	2000.00	NULL
4	kaushik	25	Mumbai	6500.00	NULL
5	Hardik	27	Bhopal	8500.00	NULL
6	Komal	22	MP	4500.00	NULL
7	Muffy	24	Indore	10000.00	NULL
Fommm e [+ + B +

Following is the example to DROP sex column from existing table:

ALTER TABLE CUSTOMERS DROP SEX

Now, CUSTOMERS table is changed and following would be output from SELECT statement:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

| ID | NAME | AGE
e [—

| 1| Ramesh | 32
| 2| Ramesh | 25
| 3| kaushik | 23
| 4| kaushik | 25
| 5 | Hardik | 27
| 6 | Komal | 22
| 7 | Muffy | 24
Feomem e +oaeee

+
ADDRESS | SALARY

+
Ahmedabad | 2000.00
Delhi | 1500.00
Kota | 2000.00
Mumbai | 6500.00
Bhopal | 8500.00
MP | 4500.00
Indore | 10000.00

+

+— +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL TRUNCATE TABLE

he SQL TRUNCATE TABLE command is used to delete complete data from an existing table.

You can also use DROP TABLE command to delete complete table but it would remove complete table structure
form the database and you would need to re-create this table once again if you wish you store some data.

Syntax:
The basic syntax of TRUNCATE TABLE is as follows:

TRUNCATE TABLE table_name

Example:

Consider the CUSTOMERS table having the following records:

dhomes dhommmmemees CESSE s b +
| ID | NAME | AGE| ADDRESS | SALARY |
dhomes dhommmmemees CESSE s b +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
[T [— + + +

Following is the example to truncate:
SQL > TRUNCATE TABLE CUSTOMERS

Now, CUSTOMERS table is truncated and following would be the output from SELECT statement:

SQL> SELECT * FROM CUSTOMERS
Empty set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL - Using Views

view is nothing more than a SQL statement that is stored in the database with an associated name. A

view is actually a composition of a table in the form of a predefined SQL query.

A view can contain all rows of a table or select rows from a table. A view can be created from one or many tables
which depends on the written SQL query to create a view.

Views, which are kind of virtual tables, allow users to do the following:
9 Structure data in a way that users or classes of users find natural or intuitive.

I Restrict access to the data such that a user can see and (sometimes) modify exactly what they need and no
more.

Summarize data from various tables which can be used to generate reports.

Creating Views:

Database views are created using the CREATE VIEW statement. Views can be created from a single table,
multiple tables, or another view.

To create a view, a user must have the appropriate system privilege according to the specific implementation.
The basic CREATE VIEW syntax is as follows:

CREATE VIEW view_name AS

SELECT columnl , column2

FROM table_name
WHERE] condition |;

You can include multiple tables in your SELECT statement in very similar way as you use them in normal SQL
SELECT query.

Example:
Consider the CUSTOMERS table having the following records:

T e — E— + + +
| ID | NAME | AGE| ADDRESS | SALARY |

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
E - E E D +

Now, following is the example to create a view from CUSTOMERS table. This view would be used to have
customer name and age from CUSTOMERS table:

SQL > CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age
FROM CUSTOMERS

Now, you can query CUSTOMERS_VIEW in similar way as you query an actual table. Following is the example:

SQL > SELECT * FROM CUSTOMERS_VIEW

This would produce the following result:

e e +
| name | age |
e e +
Ramesh	32
Khilan	25
kaushik	23
Chaitali	25
Hardik	27
Komal	22
Muffy	24
e [— +

The WITH CHECK OPTION:

The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the WITH CHECK OPTION is
to ensure that all UPDATE and INSERTSs satisfy the condition(s) in the view definition.

If they do not satisfy the condition(s), the UPDATE or INSERT returns an error.

The following is an example of creating same view CUSTOMERS_VIEW with the WITH CHECK OPTION:
CREATE VIEW CUSTOMERS_VIEW AS
SELECT name, age
FROM CUSTOMERS

WHERE age IS NOT NULL
WITH CHECK OPTION

The WITH CHECK OPTION in this case should deny the entry of any NULL values in the view's AGE column,
because the view is defined by data that does not have a NULL value in the AGE column.

Updating a View:

A view can be updated under certain conditions:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

T The SELECT clause may not contain the keyword DISTINCT.
T The SELECT clause may not contain summary functions.

q The SELECT clause may not contain set functions.

1 The SELECT clause may not contain set operators.

q The SELECT clause may not contain an ORDER BY clause.
T The FROM clause may not contain multiple tables.

T The WHERE clause may not contain subqueries.

T The query may not contain GROUP BY or HAVING.

T Calculated columns may not be updated.

T All NOT NULL columns from the base table must be included in the view in order for the INSERT query to
function.

So if a view satisfies all the abovementioned rules then you can update a view. Following is an example to update
the age of Ramesh:

SQL > UPDATE CUSTOMERS_VIEW
SET AGE = 35
WHERE name'Ramesh’ ;

This would ultimately update the base table CUSTOMERS and same would reflect in the view itself. Now, try to
query base table, and SELECT statement would produce the following result:

Jhomes o CISSSSS e e +
| ID | NAME | AGE| ADDRESS | SALARY |
Jhomes o CISSSSS e e +
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Jhomes o CISSSSS e e +

Inserting Rows into a View:

Rows of data can be inserted into a view. The same rules that apply to the UPDATE command also apply to the
INSERT command.

Here, we can not insert rows in CUSTOMERS_VIEW because we have not included all the NOT NULL columns in
this view, otherwise you can insert rows in a view in similar way as you insert them in a table.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Deleting Rows into a View:

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and INSERT commands
apply to the DELETE command.

Following is an example to delete a record having AGE= 22.

SQL > DELETE FROM CUSTOMERS_VIEW
WHERE age = 22;

This would ultimately delete a row from the base table CUSTOMERS and same would reflect in the view itself.
Now, try to query base table, and SELECT statement would produce the following result:

E - E E D +
| ID | NAME | AGE| ADDRESS | SALARY |
R C Fomeee e oo +
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
S B rommeemees frmmeoees +

Dropping Views:

Obviously, where you have a view, you need a way to drop the view if it is no longer needed. The syntax is very
simple as given below:

DROP VIEW view_name ;

Following is an example to drop CUSTOMERS_VIEW from CUSTOMERS table:

DROP VIEW CUSTOMERS_VIEW

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL HAVING CLAUSE

he HAVING clause enables you to specify conditions that filter which group results appear in the final

results.

The WHERE clause places conditions on the selected columns, whereas the HAVING clause places conditions on
groups created by the GROUP BY clause.

The following is the position of the HAVING clause in a query:

SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY

The HAVING clause must follow the GROUP BY clause in a query and must also precede the ORDER BY clause
if used. The following is the syntax of the SELECT statement, including the HAVING clause:

SELECT columnl , column2
FROM tablel , table2
WHERE conditions]
GROUP BY columnl, column2
HAVING [conditions]
ORDER BY columnl, column2

Example:

Consider the CUSTOMERS table having the following records:

T [— + + +
| ID | NAME | AGE| ADDRESS | SALARY |
e et +-ee- + + Tr
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

| 6 | Komal | 22 | MP | 4500.00 |
7 | Muffy | 24 | Indore | 10000.00 |

Following is the example, which would display record for which similar age count would be more than or equal to 2:

SQL > SELECT *

FROM CUSTOMERS
GROUP BY age

HAVING COUNTage) >= 2;

This would produce the following result:

ST — S — oo oo +
| ID | NAME | AGE| ADDRESS| SALARY |
foers dhommooees S — frocmmeemes frocmmeemes +
| 2| Khilan | 25 | Delhi | 1500.00 |
S| N Speaes e e +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Transactions

transaction is a unit of work that is performed against a database. Transactions are units or sequences

of work accomplished in a logical order, whether in a manual fashion by a user or automatically by some sort of a
database program.

A transaction is the propagation of one or more changes to the database. For example, if you are creating a record
or updating a record or deleting a record from the table, then you are performing transaction on the table. It is
important to control transactions to ensure data integrity and to handle database errors.

Practically, you will club many SQL queries into a group and you will execute all of them together as a part of a
transaction.

Properties of Transactions:

Transactions have the following four standard properties, usually referred to by the acronym ACID:

9 Atomicity: ensures that all operations within the work unit are completed successfully; otherwise, the
transaction is aborted at the point of failure, and previous operations are rolled back to their former state.

 Consistency: ensures that the database properly changes states upon a successfully committed transaction.

 Isolation: enables transactions to operate independently of and transparent to each other.

1 Durability: ensures that the result or effect of a committed transaction persists in case of a system failure.

Transaction Cont:

There are following commands used to control transactions:

i COMMIT: to save the changes.

ROLLBACK: to rollback the changes.

9 SAVEPOINT: creates points within groups of transactions in which to ROLLBACK
1 SET TRANSACTION: Places a name on a transaction.

Transactional control commands are only used with the DML commands INSERT, UPDATE and DELETE only.
They can not be used while creating tables or dropping them because these operations are automatically
committed in the database.

The COMMIT Command:

The COMMIT command is the transactional command used to save changes invoked by a transaction to the
database.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

The COMMIT command saves all transactions to the database since the last COMMIT or ROLLBACK command.

The syntax for COMMIT command is as follows:

COMMIT

Example:

Consider the CUSTOMERS table having the following records:
B B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B B e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
R C Fomeee e oo +

Following is the example, which would delete records from the table having age = 25 and then COMMIT the
changes in the database.

SQL> DELETE FROM CUSTOMERS

WHERE AGE= 25;
SQL> COMMIT

As a result, two rows from the table would be deleted and SELECT statement would produce the following result:

R C Fomeee e oo +
| ID | NAME | AGE| ADDRESS | SALARY |
Jhomes o CISSSSS e e +
1	Ramesh	32	Ahmedabad	2000.00
3	kaushik	23	Kota	2000.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Jhomes o CISSSSS e e +

The ROLLBACK Command:

The ROLLBACK command is the transactional command used to undo transactions that have not already been
saved to the database.

The ROLLBACK command can only be used to undo transactions since the last COMMIT or ROLLBACK
command was issued.

The syntax for ROLLBACK command is as follows:
ROLLBACK
Example:

Consider the CUSTOMERS table having the following records:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

B B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B B e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
E - E E D +

Following is the example, which would delete records from the table having age = 25 and then ROLLBACK the
changes in the database.

SQL> DELETE FROM CUSTOMERS

WHERE AGE= 25;
SQL> ROLLBACK

As a result, delete operation would not impact the table and SELECT statement would produce the following result:

S B rommeemees frmmeoees +
| ID | NAME | AGE| ADDRESS | SALARY |
S B rommeemees frmmeoees +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
R C Fomeee e oo +

The SAVEPOINT Command:

A SAVEPOINT is a point in a transaction when you can roll the transaction back to a certain point without rolling
back the entire transaction.

The syntax for SAVEPOINT command is as follows:

SAVEPOINT SAVEPOINT_NAME

This command serves only in the creation of a SAVEPOINT among transactional statements. The ROLLBACK
command is used to undo a group of transactions.

The syntax for rolling back to a SAVEPOINT is as follows:

ROLLBACK TO SAVEPOINT_NAME

Following is an example where you plan to delete the three different records from the CUSTOMERS table. You
want to create a SAVEPOINT before each delete, so that you can ROLLBACK to any SAVEPOINT at any time to
return the appropriate data to its original state:

Example:

Consider the CUSTOMERS table having the following records:

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

B B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
B B e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
E - E E D +

Now, here is the series of operations:

SQL> SAVEPOINT SP1,;

Savepoint created

SQL> DELETE FROM CUSTOMERS WHERE #2;
1 row deleted .

SQL> SAVEPOINT SP2,

Savepoint created .

SQL> DELETE FROM CUSTOMERS WHERE #2;
1 row deleted .

SQL> SAVEPOINT SP3;

Savepoint created .

SQL> DELETE FROM CUSTOMERS WHERE #3;
1 row deleted

Now that the three deletions have taken place, say you have changed your mind and decided to ROLLBACK to the
SAVEPOINT that you identified as SP2. Because SP2 was created after the first deletion, the last two deletions

are undone:

SQL> ROLLBACK TO SP2
Rollback complete .

Notice that only the first deletion took place since you rolled back to SP2:

SQL> SELECT * FROM CUSTOMERS

= B e e +
| ID | NAME | AGE| ADDRESS | SALARY |
= B e e +
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Jhomes o CISSSSS e e +

6 rows selected

The RELEASE SAVEPOINT Command:

The RELEASE SAVEPOINT command is used to remove a SAVEPOINT that you have created.

The syntax for RELEASE SAVEPOINT is as follows:

RELEASE SAVEPOINT SAVEPOINT_NAME

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

Once a SAVEPOINT has been released, you can no longer use the ROLLBACK command to undo transactions
performed since the SAVEPOINT.

The SET TRANSACTION Command:

The SET TRANSACTION command can be used to initiate a database transaction. This command is used to
specify characteristics for the transaction that follows.

For example, you can specify a transaction to be read only or read write.
The syntax for SET TRANSACTION is as follows:

SET TRANSACTION|[READ WRITE | READ ONLY |;

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Wildcard Operators

e already have discussed SQL LIKE operator, which is used to compare a value to similar values
using wildcard operators.
SQL supports following two wildcard operators in conjunction with the LIKE operator:
Wildcards Description

The percent sign Matches one or more characters. Note that MS Access uses the asterisk (*) wildcard
(%) character instead of the percent sign (%) wildcard character.

The underscore Matches one character. Note that MS Access uses a question mark (?) instead of the
QO underscore (_) to match any one character.

The percent sign represents zero, one, or multiple characters. The underscore represents a single number or
character. The symbols can be used in combinations.

Syntax:
The basic syntax of &dand ¢ bis as follows:

SELECT FROM table_name
WHERE column LIKE "XXXX%'

or

SELECT FROM table_name
WHERE column LIKE '%XXXX%'

or

SELECT FROM table_name
WHERE column LIKE "XXXX_'

or

SELECT FROM table_name
WHERE column LIKE ' XXXX'

or

SELECT FROM table_name

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

WHERE column LIKE " XXXX_'

You can combine N number of conditions using AND or OR operators. Here, XXXX could be any numeric or string
value.

Here are number of examples showing WHERE part having different LIKE clause with '%' and '_' operators:
Statement Description
WHERE SALARY LIKE '200%' Finds any values that start with 200

WHERE SALARY LIKE . . "
9%200%" Finds any values that have 200 in any position
WHERE SALARY LIKE '_00%' Finds any values that have 00 in the second and third positions

WHERE SALARY LIKE
"2 % %'

Finds any values that start with 2 and are at least 3 characters in length
WHERE SALARY LIKE '%2' Finds any values that end with 2

WHERE SALARY LIKE '_2%3"' Finds any values that have a 2 in the second position and end with a 3
WHERE SALARY LIKE'2___3' Finds any values in a five-digit number that start with 2 and end with 3

Let us take a real example, consider the CUSTOMERS table having the following records:

R C Fomeee e oo +
| ID | NAME | AGE| ADDRESS | SALARY |
Jhomes o CISSSSS e e +
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
= B e e +

Following is an example, which would display all the records from CUSTOMERS table where SALARY starts with
200:

SQL> SELECT * FROM CUSTOMERS
WHERE SALARY LIKE '200%" ;

This would produce the following result:

TS E e e +
| ID | NAME | AGE| ADDRESS | SALARY |
S B froomoeomees C +
| 1| Ramesh | 32 | Ahmedabad | 2000.00 |
| 3| kaushik | 23 | Kota | 2000.00 |
S B froomoeomees C

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Date Functions

ollowing is a list of all important Date and Time related functions available through SQL. There are various

other functions supported by your RDBMS. Given list is based on MySQL RDBMS.

Name
ADDDATE()
ADDTIME(Q)
CONVERT TZ()

CURDATE()
CURRENT DATE(), CURRENT DATE

CURRENT_TIME(), CURRENT_TIME

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

CURTIME()
DATE_ADD()
DATE_FORMAT()
DATE_SUB()
DATEQ
DATEDIFEF()
DAY(Q
DAYNAME()
DAYOEMONTH()
DAYOFWEEK()

Description

Adds dates

Adds time

Converts from one timezone to another
Returns the current date

Synonyms for CURDATE()

Synonyms for CURTIME()
Synonyms for NOW()

Returns the current time

Adds two dates

Formats date as specified

Subtracts two dates

Extracts the date part of a date or datetime expression
Subtracts two dates

Synonym for DAYOFMONTHY()

Returns the name of the weekday

Returns the day of the month (1-31)

Returns the weekday index of the argument

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_adddate
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_addtime
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_convert-tz
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_curdate
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_current-date
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_current-time
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_current-timestamp
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_current-timestamp
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_curtime
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_date-add
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_date-format
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_date-sub
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_date
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_datediff
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_day
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_dayname
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_dayofmonth
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_dayofweek

DAYOFYEAR() Returns the day of the year (1-366)

EXTRACT Extracts part of a date

FROM_ DAYS() Converts a day number to a date
FROM_UNIXTIME() Formats date as a UNIX timestamp

HOUR() Extracts the hour

LAST DAY Returns the last day of the month for the argument
LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

MAKEDATE() Creates a date from the year and day of year
MAKETIME MAKETIME()

MICROSECOND() Returns the microseconds from argument
MINUTE() Returns the minute from the argument

MONTH() Returns the month from the date passed
MONTHNAME() Returns the name of the month

NOW Returns the current date and time
PERIOD_ADD() Adds a period to a year-month

PERIOD_DIFF() Returns the number of months between periods
QUARTER() Returns the quarter from a date argument

SEC _TO_TIME() Converts seconds to 'HH:MM:SS' format
SECOND() Returns the second (0-59)

STR_TO_DATE() Converts a string to a date

SUBDATE() When invoked with three arguments a synonym for DATE_SUB()
SUBTIME() Subtracts times

SYSDATE() Returns the time at which the function executes
TIME_FORMAT() Formats as time

TIME_TO_SEC() Returns the argument converted to seconds
TIME() Extracts the time portion of the expression passed
TIMEDIFE() Subtracts time

With a single argument, this function returns the date or datetime
TIMESTAMP() . .
expression. With two arguments, the sum of the arguments

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_dayofyear
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_extract
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_from-days
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_from-unixtime
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_hour
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_last-day
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_localtime
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_localtimestamp
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_localtimestamp
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_makedate
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_maketime
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_microsecond
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_minute
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_month
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_monthname
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_now
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_period-add
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_period-diff
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_quarter
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_sec-to-time
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_second
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_str-to-date
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_subdate
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_subtime
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_sysdate
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_time-format
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_time-to-sec
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_time
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_timediff
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_timestamp

TIMESTAMPADD() Adds an interval to a datetime expression

TIMESTAMPDIFFE() Subtracts an interval from a datetime expression
TO DAYS() Returns the date argument converted to days
UNIX_TIMESTAMP() Returns a UNIX timestamp

UTC DATE() Returns the current UTC date

UTC_ TIME() Returns the current UTC time

UTC TIMESTAMP() Returns the current UTC date and time
WEEK() Returns the week number

WEEKDAY() Returns the weekday index
WEEKOFYEAR() Returns the calendar week of the date (1-53)
YEAR() Returns the year

YEARWEEK() Returns the year and week

ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for DATE_ADD(). The
related function SUBDATE() is a synonym for DATE_SUB(). For information on the INTERVAL unit argument, see
the discussion for DATE_ADD().

mysql > SELECT DATE_ADD'1998 -01-02' , INTERVAL 31 DAY);
+

| DATE_ADD'1998 - 01-02' , INTERVAL 31 DAY
+

| 1998-02- 02

+— +— +

1 row in set (0.00 sec)

mysql > SELECT ADDDATE'1998 -01-02' , INTERVAL 31 DAY);

ADDDATE'1998 - 01-02', INTERVAL 31 DAY

+— +— +

+
I
+
| 1998-02- 02
+
1 row in set (0.00 sec)

When invoked with the days form of the second argument, MySQL treats it as an integer number of days to be
added to expr.

mysql > SELECT ADDDATE'1998 - 01-02' , 31);

DATE_ADD'1998 -01-02' , INTERVAL 31 DAY)

+— +— +

.
I
+
| 1998-02- 02
+
1

row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_timestampadd
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_timestampdiff
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_to-days
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_unix-timestamp
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_utc-date
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_utc-time
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_utc-timestamp
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_week
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_weekday
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_weekofyear
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_year
http://www.tutorialspoint.com/sql/sql-date-functions.htm#function_yearweek

ADDTIME(exprl,expr2)

ADDTIME() adds expr2 to exprl and returns the result. exprl is a time or datetime expression, and expr2 is a time
expression.

mysgl > SELECT ADDTIME '1997 - 12- 31 23:59:59.999999' ,'11:1:1.000002');
|+ DATE_ADD'1997 -12-3123:59:5 9.999999' |, '11:1:1.000002') |+
|+ 1998-01- 02 01: 01: 01.000001 |+
Jlr row in set (0.00 sec) '

CONVERT _TZ(dt,from_tzto tz)

This converts a datetime value dt from the time zone given by from_tz to the time zone given by to_tz and returns
the resulting value. This function returns NULL if the arguments are invalid.

mysql > SELECT CONVERT_TZ'2004 - 01- 01 12:00:00° ,'GMT', 'MET");

CONVERT_TZ2004 -01-0112:00:00' ,'GMT', 'MET")

+
I
+
I
+

+

I

+

| 2004-01-01 13:00: 00
+

1 row in set (0.00 sec)

mysgl > SELECT CONVERT_TZ'2004 -01-01 12:00:00" , '+00:00" ,'+10:00");

CONERT_TZ '2004 -01-0112:00:00" ,'+00:00' ,'+10:00")

+— +—

+
I
+
| 2004-01-01 22:00: 00
+
1

row in set (0.00 sec)

CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the function
is used in a string or numeric context.

mysql > SELECT CURDATE);

+ +
| CURDATH |
+ +
| 1997-12-15 |
+ +
1 row in set (0.00 sec)

mysql > SELECT CURDATE + O;

+ +
| CURDATE + 0 |
+ +
| 19971215 |
+ +
1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

CURRENT_DATE and CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE()

CURTIME()

Returns the current time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the function is used
in a string or numeric context. The value is expressed in the current time zone.

mysql > SELECT CURTIME);

+ +
| CURTIME) |
+ +
| 23:50:26 [
+ +
1 row in set (0.00 sec)

mysqgl > SELECT CURTIME) + O;

+ +
| CURTIME) + O |
+ +
| 235026 |
+ +

1 row in set (0.00 sec)

CURRENT _TIME and CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql > SELECT DATE '2003 - 12- 31 01:02:03');
+

| DATH '2003 - 12-3101:02:03')
+

+— +— +

2003-12-31

I
+
1 row in set (0.00 sec)

DATEDIFF(exprl,expr2)

DATEDIFF() returns exprl . expr2 expressed as a value in days from one date to the other. exprl and expr2 are
date or date-and-time expressions. Only the date parts of the values are used in the calculation.

mysql > SELECT DATEDIFF('1997 -12-3123:59:59' ,'19 97-12- 30");

+ +
| DATEDIFF('1997 -12-3123:59:59' ,'1997 -12-30") |
+ +
| 1 I
+--- +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1 row in set (0.00 sec)

DAE_ADD(date,INTERVAL expr unit),
DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. date is a DATETIME or DATE value specifying the starting date. expr is
an expression specifying the interval value to be added or subtracted from the starting date. expr is a string; it may
start with a 86for negative intervals. unit is a keyword indicating the units in which the expression should be

interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

The following table shows the expected form of the expr argument for each unit value;

unit Value
MICROSECOND
SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

QUARTER

YEAR
SECOND_MICROSECOND
MINUTE_MICROSECOND
MINUTE_SECOND
HOUR_MICROSECOND
HOUR_SECOND
HOUR_MINUTE
DAY_MICROSECOND
DAY_SECOND
DAY_MINUTE

DAY_HOUR

Expected exprFormat
MICROSECONDS

SECONDS

MINUTES

HOURS

DAYS

WEEKS

MONTHS

QUARTERS

YEARS
'SECONDS.MICROSECONDS'
'MINUTES.MICROSECONDS'
'MINUTES:SECONDS'
'HOURS.MICROSECONDS'
'HOURS:MINUTES:SECONDS'
'HOURS:MINUTES'
'DAYS.MICROSECONDS'
'DAYS HOURS:MINUTES:SECONDS'
'DAYS HOURS:MINUTES'

‘DAYS HOURS'

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

YEAR_MONTH 'YEARS-MONTHS'

The values QUARTER and WEEK are available beginning with MySQL 5.0.0.

mysql > SELECT DATE_ADD'1997 -12- 31 23:59:59"
-> INTERVAL '1:1' MINUTE_SECOND

DATE_ADD'1997 -12-3123:59:59° | INTERVAL..

+— +— +

+

I

+

| 1998-01-01 00:01: 00
+

1 row in set (0.00 sec)

mysql > SELECT DATE_ADD'1999 -01-01' , INTERVAL 1 HOUR

DATE_ADD'1999 -01-01', INTERVAL 1 HOUR

+— +— +

+
I
+
| 1999-01-01 01:00: 00
+
1

row in set (0.00 sec)

DATE_FORMAT (date,format)

Formats the date value according to the format string.

The following specifiers may be used in the format string. The 6 %dharacter is required before format specifier
characters.

Specifier Description

%a Abbreviated weekday name (Sun..Sat)
%b Abbreviated month name (Jan..Dec)
%c Month, numeric (0..12)

%D Day of the month with English suffix (Oth, 1st, 2nd, 3rd, .)
%d Day of the month, numeric (00..31)
%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%] Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week

%u Week (00..53), where Monday is the first day of the week

%V Week (01..53), where Sunday is the first day of the week; used with %X
%v Week (01..53), where Monday is the first day of the week; used with %x
%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four digits; used with %V
%X Year for the week, where Monday is the first day of the week, numeric, four digits; used with %v
%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal .%. character

%X x, for any.x. not listed above

mysql > SELECT DATE_FORMAT1997 - 10- 04 22:23:00' , '%W %M %Y?);

|+ DATE_FORMAT1997 - 10- 04 22:23:00' , %W %M %Y") |+

|+ Saturday October 1997 |+

+ +

1 row in set (0.00 sec)

mysql > SELECT DATE_FORMAT1997 - 10- 04 22:23:00'
-> '%H %k %I %r %T %S %w');

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1 row in set (0.00 sec)

DATE_SUB(date,INTERVAL expr unit)

This is similar to DATE_ADD() function.

DAY (date)

DAY() is a synonym for DAYOFMONTHY().

DAYNAME(date)

Returns the name of the weekday for date.

mysgl > SELECT DAYNAME1998 - 02-05');
+

| DAYNAME1998 - 02-05')
+

| Thursday
+

+— +— +

1 row in set (0.00 sec)

DAYOFMONTH(date)

Returns the day of the month for date, in the range 0 to 31.

mysgl > SELECT DAYOFMONTHL998 - 02- 03");

DAYOFMONTH.998 -02- 03")

+— +— +

+
I
+
| 3
+
1 row in set (0.00 sec)

DAYOFWEEK (date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, ., 7 = Saturday). These index values correspond to
the ODBC standard.

mysql > SELECT DAYOFWEEK1998 - 02- 03");
+

| DAYOFWEEK1998 - 02- 03')
+

+— +— +

| 3
+
1 row in set (0.00 sec)

DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysqgl > SELECT DAYOFYEAR1998 - 02-03');
+ +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

+— +—

1 row in set (0.00 sec)

EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(), but extracts
parts from the date rather than performing date arithmetic.

mysql > SELECT EXTRACT YEAR FROM'1999 -07- 02");

EXTRACTYEAR FROM'1999 -07-02")

+— +— +

+
I
+
| 1999
+
1 row in set (0.00 sec)

mysgl > SELECT EXTRACT YEAR_MONTH FROM999 - 07- 02 01:02:03");

EXTRACTYEAR_MONTH FROM999 - 07-02 01:02:03")

+— +— +

+
I
+
| 199907
+
1 row in set (0.00 sec)

FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql > SELECT FROM_DAY(S729669);

FROM_DAY(S729669)

+— +— +

+
I
+
| 1997-10-07
+
1 row in set (0.00 sec)

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the advent of the
Gregorian calendar (1582).

FROM_UNIXTIME(unix_timestamp)
FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. The value
is expressed in the current time zone. unix_timestamp is an internal timestamp value such as is produced by the
UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same way as listed in the
entry for the DATE_FORMAT() function.

mysqgl > SELECT FROM_UNIXTIME 875996580);

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

FROM_UNIXTIME 875996580)

+— +— +

+
I
+
| 1997-10-04 22:23:00
+
1

row in set (0.00 sec)

HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However, the range of
TIME values actually is much larger, so HOUR can return values greater than 23.

mysgl > SELECT HOUR'10:05:03');
+
| HOUR'10:05:03')

+
+— +— +

1 row in set (0.00 sec)

LAST_ DAY (date)

Takes a date or datetime value and returns the corresponding value for the last day of the month. Returns NULL if
the argument is invalid.

mysgl > SELECT LAST_DAY '2003 - 02- 05");

LAST_DAY '2003 - 02-05')

+— +— +

+
I
+
| 2003-02-28
+
1

row in set (0.00 sec)

LOCALTIME and LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW().

LOCALTIMESTAMP and LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

MAKEDATE((year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result is NULL.

mysql > SELECT MAKEDATE2001, 31), MAKEDATE2001, 32);

MAKEDATE2001, 31), MAKEDATE2001, 32)

+— +— +

+
I
+
| '2001 -01-31', '2001 -02-01
+
1

row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute and second arguments.

mysql > SELECT MAKETIME 12, 15, 30);

MAKETIME 12, 15, 30)

+— +— +

L
I
L
| '12:15:30'
L
1

row in set (0.00 sec)

MICROSECONRYr)

Returns the microseconds from the time or datetime expression expr as a number in the range from 0 to 999999.

mysgl > SELECT MICROSECONDL12:00:00.123456');

MICROSECONDL2:00:00.123456')

+— +— +

+
I
+
| 123456
+
1 row in set (0.00 sec)

MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql > SELECT MINUTE '98 - 02- 03 10:05:03');

MINUTH '98 - 02- 03 10:05:03") |

+

I

+

| 5 |
+

1 row in set (0.00 sec)

MONTH(date)

Returns the month for date, in the range 0 to 12.

mysgl > SELECT MONTH'1998 - 02- 03')
+

| MONTH1998 - 02-03')

+
+— +— +

1 row in set (0.00 sec)

MONTHNAME(date)

Returns the full name of the month for date.

mysgl > SELECT MONTHNAMEL998 - 02- 05');
+

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

MONTHNAME998 - 02- 05')

February

+— +—

P+ +—

row in set (0.00 sec)

NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format,
depending on whether the function is used in a string or numeric context. The value is expressed in the current
time zone.

mysql > SELECT NOW;

NOW

+— +— +

+
I
+
| 1997-12-15 23:50: 26
+
1

row in set (0.00 sec)

PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM. Note that
the period argument P is not a date value.

mysql > SELECT PERIOD_ADD 9801, 2);

PERIOD_ADD 9801, 2)

+— +— +

+
I
+
| 199803
+
1 row in set (0.00 sec)

PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM or
YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql > SELECT PERIOD_DIFF(9802, 199703);

PERIOD_DIFF(9802, 199703)

+— +— +

+
I
+
| 11
+
1 row in set (0.00 sec)

QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysqgl > SELECT QUARTER'98 - 04-01');

+ +
| QUARTER98 - 04-01')

+ +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

2

I
+
1 row in set (0.00 sec)

SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql > SELECT SECOND'10:05:03')

SECOND'10:05:03')

+— +— +

+
I
+
| 3
+
1 row in set (0.00 sec)

SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes and seconds, as a value in 'HH:MM:SS' or HHMMSS
format, depending on whether the function is used in a string or numeric context.

mysql > SELECT SEC_TO_TIME 2378);

SEC_TO_TIME 2378)

+— +— +

L
I
L
| 00:39:38
L
1

row in set (0.00 sec)

STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format.
STR_TO_DATE() returns a DATETIME value if the format string contains both date and time parts or a DATE or
TIME value if the string contains only date or time parts.

mysql > SELECT STR_TO_DATE'04/31/2004"' , '%m/%d/%Y");

STR_TO_DATE'04/31/2004' , '%m/%d/%Y")

+— +— +

+
I
+
| 2004-04-31
+
1

row in set (0.00 sec)

SUBDATE(date,INTERVAL expr unit) and
SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for DATE_SUB(). For
information on the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql > SELECT DATE_SUB'1998 -01-02' , INTERVAL 31 DAY);

DATE_SUB'1998 -01-02' , INTERVAL 31 DAY)

1997-12-02

+— +— +
+— +— +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1 row in set (0.00 sec)

mysql > SELECT SUBDATE'1998 - 01-02' , INTERVAL 31 DAYj;

SUBDATE'1998 -01-02' , INTERVAL 31 DAY

+— +— +

+
I
+
| 1997-12- 02
+
1

row in set (0.00 sec)

SUBTIME(exprl,expr2)

SUBTIME() returns exprl . expr2 expressed as a value in the same format as exprl. exprl is a time or datetime
expression, and expr2 is a time.

mysql > SELECT SUBTIMKE '1997 - 12- 31 23:59:59.999999'

1

-> '11:1:1.000002');
+ +
| SUBTIME '1997 - 12- 31 23:59:59.999999' |
A e e e +
| 1997-12-30 22:58:58.999997 |
+ +

1 row in set (0.00 sec)

SYSDATE()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format,
depending on whether the function is used in a string or numeric context.

mysql > SELECT SYSDATE);

+— +— +

row in set (0.00 sec)

TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

mysql > SELECT TIME('2003 - 12- 31 01:02:03");

TIME('2003 -12-3101:02:03')

+— +— +

L
I
L
| 01:02:03
L
1

row in set (0.00 sec)

TIMEDIFF(exprl,expr2)

TIMEDIFF() returns exprl . expr2 expressed as a time value. exprl and expr2 are time or date-and-time
expressions, but both must be of the same type.

mysql > SELECT TIMEDIFF ('1997 - 12- 31 23:59:59.000001'
-> '1997 -12-3001:01:01.000002');

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

+— +— +

1 row in set (0.00 sec)

TIMESTAMP(expr), TIMESTAMP(exprl,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime value. With two
arguments, it adds the time expression expr2 to the date or datetime expression exprl and returns the result as a
datetime value.

mysql > SELECT TIMESTAMR '2003 - 12- 31");

TIMESTAMR '2003 - 12-31')

+— +— +

+
I
+
| 2003-12-31 00:00: 00
+
1

row in set (0.00 sec)

TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The unit for interval is given
by the unit argument, which should be one of the following values: FRAC_SECOND, SECOND, MINUTE, HOUR,
DAY, WEEK, MONTH, QUARTER or YEAR.

The unit value may be specified using one of keywords as shown or with a prefix of SQL_TSI_. For example, DAY
and SQL_TSI_DAY both are legal.

mysql > SELECT TIMESTAMPADDMINUTE 1, ‘2003 - 01- 02");

TIMESTAMPADDMINUTE 1, '2003 - 01-02')

+— +— +

+
I
+
| 2003-01-02 00:01: 00
+
1

row in set (0.00 sec)

TIMESTAMPDIFF(unit,datetime_exprl,datetime_expr2)

Returns the integer difference between the date or datetime expressions datetime_exprl and datetime_expr2. The
unit for the result is given by the unit argument. The legal values for unit are the same as those listed in the
description of the TIMESTAMPADD() function.

mysql > SELECT TIMESTAMPDIFR MONTH?2003 - 02-01' ,'2003 - 05- 01");
+

| TIMESTAMPDIFFK MONTH2003 - 02-01' , '2003 - 05-01")
+-
| 3
+
1 row in set (0.00 sec)

+— +— +

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

TIME_FORMAT (time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers only for hours,
minutes and seconds.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers produce a
value larger than the usual range of 0..23. The other hour format specifiers produce the hour value modulo 12.

mysgl > SELECT TIME_FORMAT'100:00:00' , '%H %k %h %I %');
+ +
| TIME_FORMAT'100:00:00' , '%H %k %h %I %l') |
+ +
| 100 100 04 04 4 |
+ +
1 row in set (0.00 sec)

TIME_TO_SEC(time)

Returns the time argument converted to seconds.
mysql > SELECT TIME_TO_SEQ '22:23:00');
+ +
| TIME_TO_SEQ '22:23:00°) |
+ +
| 80580 |
+ +
1 row in set (0.00 sec)

Given a date, returns a day number (the number of days since year 0).
mysql > SELECT TO_DAY$ 950501);
+ +
| TO_DAY$950501) |
+ +
| 728779 I
e +

1 row in set (0.00 sec)

UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00' UTC) as an unsigned
integer. If UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds
since '1970-01-01 00:00:00' UTC. date may be a DATE string, a DATETIME string, a TIMESTAMP, or a number in
the format YYMMDD or YYYYMMDD.

mysql > SELECT UNIX_TIMESTAMR);

+— +— +

row in set (0.00 sec)

mysql > SELECT UNIX_TIMESTAMR '1997 - 10- 04 22:23:00');

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

UNIX_TIMESTAMR '1997 - 10- 04 22:23:00°)

+— +— +

+
I
+
| 875996580
+
1

row in set (0.00 sec)

UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the
function is used in a string or numeric context.

mysqgl > SELECT UTC_DATE), UTC_DATE) + O;

UTC_DATE), UTC_DATE + 0

+— +— +

+
I
+
| 2003-08-14, 20030814
+
1

row in set (0.00 sec)

UTC_TIME, UTC_TIME()

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the function is
used in a string or numeric context.

mysql > SELECT UTC_TIME), UTC_TIME) + O;

UTC_TIME), UTC_TIME) + 0

+— +— +

+
I
+
| 18:07:53, 180753
+
1

row in set (0.00 sec)

UTC_TIMESTAMP, UTC_TIMESTAMP()

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDHHMMSS format,
depending on whether the function is used in a string or numeric context.

mysgl > SELECT UTC_TIMESTAMP, UTC_TIMESTAMR) + 0;

UTC_TIMESTAMB, UTC_TIMESTAMB + 0

+— +— +

+
I
+
| 2003-08-14 18:08: 04, 20030814180804
+
1

row in set (0.00 sec)

WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() allows you to specify whether
the week starts on Sunday or Monday and whether the return value should be in the range from 0 to 53 or from 1
to 53. If the mode argument is omitted, the value of the default_week_format system variable is used

Mode First Day of week Range Week 1 is the first week .

0 Sunday 0-53 with a Sunday in this year

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

1 Monday 0-53 with more than 3 days this year

2 Sunday 1-53 with a Sunday in this year
3 Monday 1-53 with more than 3 days this year
4 Sunday 0-53 with more than 3 days this year
5) Monday 0-53 with a Monday in this year
6 Sunday 1-53 with more than 3 days this year
7 Monday 1-53 with a Monday in this year

mysql > SELECT WEEK'1998 - 02- 20");

WEEK'1998 - 02- 20")

+— +— +

+
I
+
| 7
+
1 row in set (0.00 sec)

WEEKDAY (date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, . 6 = Sunday).

mysgl > SELECT WEEKDAY1998 - 02- 03 22:23:00");

WEEKDA{Y1998 - 02- 03 22:23:00")

+— +— +

+
I
+
| 1
+
1 row in set (0.00 sec)

WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a compatibility
function that is equivalent to WEEK(date,3).

mysql > SELECT WEEKOFYEARL998 - 02- 20");

WEEKOFYEARL998 - 02- 20")

+— +— +

+
I
+
| 8
+
1 row in set (0.00 sec)

YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the .zero. date.

mysgl > SELECT YEAR '98 - 02- 03");
+

YEAR '98 - 02-03')

—+— +

I
+
| 1998

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

+ +
1 row in set (0.00 sec)

YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The mode argument works exactly like the mode argument to WEEK(). The
year in the result may be different from the year in the date argument for the first and the last week of the year.

mysql > SELECT YEARWEEK1987 - 01-01');
+

| YEAR'98 - 02-03') YEARWEEK1987 - 01-01')
+
| 198653

+— +— +

1 row in set (0.00 sec)

Note that the week number is different from what the WEEK() function would return (0) for optional arguments 0 or
1, as WEEK() then returns the week in the context of the given year.

For more information, check MySQL Official Website - Date and Time Functions

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/
http://dev.mysql.com/doc/en/Date_and_time_functions.html

SQL Temporary Tables

here are RDBMS, which support temporary tables. Temporary Tables are a great feature that lets you

store and process intermediate results by using the same selection, update, and join capabilities that you can use
with typical SQL Server tables.

The temporary tables could be very useful in some cases to keep temporary data. The most important thing that
should be known for temporary tables is that they will be deleted when the current client session terminates.

Temporary tables are available in MySQL version 3.23 onwards. If you use an older version of MySQL than 3.23,
you can't use temporary tables, but you can use heap tables.

As stated earlier, temporary tables will only last as long as the session is alive. If you run the code in a PHP script,
the temporary table will be destroyed automatically when the script finishes executing. If you are connected to the
MySQL database server through the MySQL client program, then the temporary table will exist until you close the
client or manually destroy the table.

Example

Here is an example showing you usage of temporary table:

mysgl > CREATE TEMPORARY TABLE SALESSUMMARY
- > product_name VARCHAR (50) NOT NULL
-> , total_sales DECIMAL (12,2) NOT NULL DEFAULT 0.00
-> , avg_unit_price DECIMAL (7,2) NOT NULL DEFAULT 0.00
-> , total_units_sold INT UNSIGNED NOT NULL DEFAULT 0
);
Query OK 0 rows affected (0.00 sec)

mysql > INSERT INTO SALESSUMMARY
-> (product_name , total_sales , avg_unit_price , total_units_sold)
-> VALUES
-> ('cucumber' , 100.25 , 90, 2);

mysql > SELECT * FROM SALESSUMMARY

A smmmmmmeeemees e b ommmmmmoscommmes e +
| product_ name | total_sales | avg_unit_price | total_units_sold |
A smmmmmmeeemees e b ommmmmmoscommmes e +
| cucumber | 100.25 | 90.00 | 2 |
A smmmmmmeeemees e b ommmmmmoscommmes e +

1 row in set (0.00 sec)

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

When you issue a SHOW TABLES command, then your temporary table would not be listed out in the list. Now if
you will log out of the MySQL session and then you will issue a SELECT command, then you will find no data
available in the database. Even your temporary table would also not exist.

Dropping Temporary Tables:

By default, all the temporary tables are deleted by MySQL when your database connection gets terminated. Still
you want to delete them in between, then you do so by issuing DROP TABLE command.

Following is the example on dropping a temproary table.

mysqgl > CREATE TEMP®RARY TABLE SALESSUMMARY
-> product_name VARCHAR (50) NOT NULL
-> | total_sales DECIMAL (12,2) NOT NULL DEFAULT 0.00
-> | avg_unit_price DECIMAL (7,2) NOT NULL DEFAULT 0.00
-> | total_units_sold INT UNSIGNED NOT NULL DEFAULT 0
);
Query OK 0 rows affected (0.00 sec)

mysgl > INSERT INTO SALESSUMMARY

-> (product_name , total_sales , avg_unit_price , total_units_sold)
-> VALUES
-> ('cucumber' , 100.25 , 90, 2);
mysqgl > SELECT * FROM SALESSUMMARY
e e e e +
| product_ name | total_sales | avg_unit_price | total_units_sold |
e e e e +
| cucumber | 100.25 | 90.00 | 2 |
e e e e +

1 row in set (0.00 sec)

mysql > DROP TABLE SALESSUMMARY

mysgl > SELECT * FROM SALESSUMMARY

ERROR1146: Table 'TUTORIALS.SALESSUMMARY' doesn 't exist

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Clone Tables

here may be a situation when you need an exact copy of a table and CREATE TABLE ... SELECT...

doesn't suit your purposes because the copy must include the same indexes, default values, and so forth.

If you are using MySQL RDBMS, you can handle this situation by the following steps:

Use SHOW CREATE TABLE command to get a CREATE TABLE statement that specifies the source table's
structure, indexes and all.

I Modify the statement to change the table name to that of the clone table and execute the statement. This way
you will have exact clone table.

9 Optionally, if you need the table contents copied as well, issue an INSERT INTO ... SELECT statement, too.

Example:

Try out the following example to create a clone table for TUTORIALS_TBL , whose structure is as follows:

Step 1.

Get complete structure about table.

SQL> SHOW CREATE TABLE TUTORIALS_TBL\ G
* TR AR AR 1. row * TR R AR AR AR
Table : TUTORIALS_TBL
Create Table : CREATE TABLE TUTORIALS_TBL™ (

“tutorial_id” int (11) NOT NULL auto_increment
“tutorial_title varchar (100) NOT NULL default "
“tutorial_author varchar (40) NOT NULL default " |
“submission_date’ date default NULL

PRIMARY KEY (tutorial_id"),

UNIQUE KEY "AUTHOR_INDEX" (“tutorial_author’)

) TYPE=MyISAM
1 row in set (0.00 sec)

Step 2:

Rename this table and create another table.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL> CREATE TABLE 'CLONE_TBL® (

- > “tutorial_id” int (11) NOT NULL auto_increment

- > “tutorial_title’ varchar (100) NOT NULL default " ,
- > “tutorial_author’ varchar (40) NOT NULL default " ,
- > ‘submission_date’ date default NULL,

-> PRIMARY KEY (‘tutorial_id")s

-> UNIQUE KEY "AUTHOR_INDEX" (“tutorial_author’)

->) TYPE=MyISAM
Query OK 0 rows affected (1.80 sec)

Step 3:

After executing step 2, you will clone a table in your database. If you want to copy data from old table, then you
can do it by using INSERT INTO... SELECT statement.

SQL> INSERT INTO CLONE_TBL (tutorial_id

-> tutorial_title ,
-> tutorial_author ,
-> submission_date)
-> SELECT tutorial_id , tutorial_title ,

-> tutorial_author , submission_date

-> FROM TUTORIALS_TBL
Query OK 3 rows affected (0.07 sec)
Records : 3 Duplicates : 0 Warnings : 0

Finally, you will have exact clone table as you wanted to have.

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

SQL Sub Queries

Subquery or Inner query or Nested query is a query within another SQL query and embedded within

the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to further restrict the data to
be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along with the operators
like =, <, >, >=, <=, IN, BETWEEN etc.

There are a few rules that subqueries must follow:

f
f

Subqueries must be enclosed within parentheses.

A subquery can have only one column in the SELECT clause, unless multiple columns are in the main query
for the subquery to compare its selected columns.

An ORDER BY cannot be used in a subquery, although the main query can use an ORDER BY. The GROUP
BY can be used to perform the same function as the ORDER BY in a subquery.

Subgqueries that return more than one row can only be used with multiple value operators, such as the IN
operator.

The SELECT list cannot include any references to values that evaluate to a BLOB, ARRAY, CLOB, or
NCLOB.

A subquery cannot be immediately enclosed in a set function.

The BETWEEN operator cannot be used with a subquery; however, the BETWEEN operator can be used
within the subquery.

Subqueries with the SELECT Statement:

Subqueries are most frequently used with the SELECT statement. The basic syntax is as follows:

SELECT column_name [, column_name |
FROM tablel [[table2]
WHERE column_name OPERATOR

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

(SELECT column_name [, column_name |
FROM tablel [, table2]

[WHERE

Example:

Consider the CUSTOMERS table having the following records:
E - E E D +
| ID | NAME | AGE| ADDRESS | SALARY |
E - E E D +
1	Ramesh	35	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
R C Fomeee e oo +

Now, let us check the following subquery with SELECT statement:

SQL> SELECT *
FROM CUSTOMERS
WHERE ID IN (SELECT ID
FROM CUSTOMERS
WHERE SALARY> 4500) ;

This would produce the following result:

R C Fomeee + + +
| ID | NAME | AGE| ADDRESS| SALARY |
Jhomes o CISSSSS + + +
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
= B + + +

Subqueries with the INSERT Statement:

Subqueries also can be used with INSERT statements. The INSERT statement uses the data returned from the
subquery to insert into another table. The selected data in the subquery can be modified with any of the character,
date or number functions.

The basic syntax is as follows:

INSERT INTO table_name [(columnl [, column2])]
SELECT [*| columnl [, column2]
FROM tablel [, table2 |
[WHERE VALUE OPERATOR

Example:

Consider a table CUSTOMERS_BKP with similar structure as CUSTOMERS table. Now to copy complete
CUSTOMERS table into CUSTOMERS_BKP, following is the syntax:

SQL> INSERT INTO CUSTOMERS_BKP
SELECT * FROM CUSTOMERS

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

WHERE ID IN (SELECT ID
FROM CUSTOMERS;

Subqueries with the UPDATE Statement:

The subquery can be used in conjunction with the UPDATE statement. Either single or multiple columns in a table
can be updated when using a subquery with the UPDATE statement.

The basic syntax is as follows:

UPDATE table

SET column_name = new_value

[WHERE OPERATOR VALUE |
(SELECT COLUMN_NAME
FROM TABLE_NAME
[WHERE]

Example:
Assuming, we have CUSTOMERS_BKP table available which is backup of CUSTOMERS table.

Following example updates SALARY by 0.25 times in CUSTOMERS table for all the customers whose AGE is
greater than or equal to 27:

SQL> UPDATE CUSTOMERS
SET SALARY = SALARY * 0.25
WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP
WHERE AGE>= 27);

This would impact two rows and finally CUSTOMERS table would have the following records:

Jhomes o CISSSSS e e +
| ID | NAME | AGE| ADDRESS | SALARY |
= B e e +
1	Ramesh	35	Ahmedabad	125.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	2125.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
Jhomes o CISSSSS e e +

Subqueries with the DELETE Statement:

The subquery can be used in conjunction with the DELETE statement like with any other statements mentioned
above.

The basic syntax is as follows:

DELETE FROM TABLE_NAME

[WHERE OPERATOR VALUE |
(SELECT COLUMN_NAME
FROM TABLE_NAME
[WHERE]

TUTORIALS POINT
Simply Easy Learning

htt://www.tutorialspoint.com/
htt://www.tutorialspoint.com/

